Skip to main content

Advertisement

Log in

CO2 capture from flue gases using a fluidized bed reactor with limestone

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The CO2 capture from flue gases by a small fluidized bed reactor was experimentally investigated with limestone. The results showed that CO2 in flue gases could be captured by limestone with high efficiency, but the CO2 capture capacity of limestone decayed with the increasing of carbonation/calcination cycles. From a practical point of view, coal may be required to provide the heat for CaCO3 calcination, resulting in some potential effect on the sorbent capacity of CO2 capture. Experiment results indicated that the variation in the capacity of CO2 capture by using a limestone/coal ash mixture with a cyclic number was qualitatively similar to the variation of the capacity of CO2 capture using limestone only. Cyclic stability of limestone only undergoing the kinetically controlled stage in the carbonation process had negligible difference with that of the limestone undergoing both the kinetically controlled stage and the product layer diffusion controlled stage. Based on the experimental data, a model for the high-velocity fluidized bed carbonator that consists of a dense bed zone and a riser zone was developed. The model predicted that high CO2 capture efficiencies (>80%) were achievable for a range of reasonable operating conditions by the high-velocity fluidized bed carbonator in a continuous carbonation and calcination system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Houghton, Climate change 1995: The science of climate change, Cambridge University Press Publications, Cambridge (1996).

    Google Scholar 

  2. T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki and K. Tejima, Trans. IChemE., 77, 62 (1999).

    Article  CAS  Google Scholar 

  3. J. C. Abanades, E. J. Anthony, D.Y. Lu, C. Salvador and D. Alvarez, AIChE J., 50, 1614 (2004).

    Article  CAS  Google Scholar 

  4. Z. S. Li, N. S. Cai and C. Eric, AIChE J., 54, 1912 (2008).

    Article  CAS  Google Scholar 

  5. Z. S. Li, N. S Cai and Y.Y. Huang, Ind. Eng. Chem. Res., 45, 1911 (2006).

    Article  CAS  Google Scholar 

  6. Z. S. Li, N. S. Cai, Y.Y. Huang and H. J. Han, Energy & Fuels, 19, 1447 (2005).

    Article  CAS  Google Scholar 

  7. K. Kuramoto, S. Shibano, S. Fujimoto, T. Kimura, Y. Suzuki, H. Hatano, S.Y. Lin, M. Harada, K. Morishita and T. Takarada, Ind. Eng. Chem. Res., 42, 3566 (2003).

    Article  CAS  Google Scholar 

  8. J.C. Abanades and D. Alvarez, Energy & Fuels, 17, 308 (2003).

    Article  CAS  Google Scholar 

  9. H. J. Ryu, J. R. Grace and C. J. Lim, Energy & Fuels, 20, 1621 (2006).

    Article  CAS  Google Scholar 

  10. F. Fang, Z. S. Li and N. S. Cai, Energy & Fuels, 23, 207 (2009).

    Article  CAS  Google Scholar 

  11. H. J. Ryu, Y.C. Park, S. H. Jo and M.H. Park, Korean J. Chem. Eng., 25, 1178 (2008).

    Article  CAS  Google Scholar 

  12. G. T. Jin, H. J. Ryu, S. H. Jo, S. Y. Lee, S. R. Son and S. D. Kim, Korean J. Chem. Eng., 24, 542 (2007).

    Article  CAS  Google Scholar 

  13. K. S. Song, Y. S. Seo, H.K. Yoon and S. J. Cho, Korean J. Chem. Eng., 20, 471 (2003).

    Article  CAS  Google Scholar 

  14. H. J. Ryu and G. T. Jin, Korean J. Chem. Eng., 24, 527 (2007).

    Article  CAS  Google Scholar 

  15. Z. S. Li, F. Fang and N. S. Cai, Journal of Engineering for Thermal Energy and Power, 22, 642 (2007).

    CAS  Google Scholar 

  16. A. Silaban and P. Harrison, Chem. Eng. Commun., 137, 177 (1995).

    Article  CAS  Google Scholar 

  17. R. H. Borgwardt, Ind. Eng. Chem. Res., 28, 493 (1989).

    Article  CAS  Google Scholar 

  18. D. Kunii and O. Levenspiel, Ind. Eng. Chem. Res., 29, 1226 (1990).

    Article  CAS  Google Scholar 

  19. T. S. Pugsley and F. Berruti, Powder Technology, 89, 57 (1996).

    Article  CAS  Google Scholar 

  20. T. S. Pugsley and F. Berruti, Chem. Eng. Sci., 51, 2751 (1996).

    Article  CAS  Google Scholar 

  21. G. S. Patience and J. Chaouki, Chem. Eng. Sci., 48, 3195 (1993).

    Article  CAS  Google Scholar 

  22. H. T. Bi, Can. Jour. Chem. Eng., 80, 809 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning-sheng Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, F., Li, Zs. & Cai, Ns. CO2 capture from flue gases using a fluidized bed reactor with limestone. Korean J. Chem. Eng. 26, 1414–1421 (2009). https://doi.org/10.1007/s11814-009-0198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0198-3

Key words

Navigation