Skip to main content
Log in

Surface modification and adsorption of eucalyptus wood-based activated carbons: Effects of oxidation treatment, carbon porous structure and activation method

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The incorporation of oxygen functional groups onto the surface of eucalyptus activated carbon and its surface chemistry were investigated as a function of oxidation conditions, carbon porous properties and carbon preparation method. Under all treatment conditions of increasing time, temperature and oxidant concentration, liquid oxidation with HNO3, H2O2 and (NH4)2S2O8 and air oxidation led to the increase of acidic group concentration, with carboxylic acid showing the largest percentage increase and air oxidation at the maximum allowable temperature of 350 °C produced the maximum content of both carboxylic acid and total acidic group. Nitric acid oxidation of chemically activated carbon produced higher total acidic content but a lower amount of carboxylic acid compared to the oxidized carbon from physical activation. The increased contents of acidic groups on oxidized carbons greatly enhanced the adsorption capacity of water vapor and heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Bansal and M. Goyal, Activated carbon adsorption, CRC Press, Florida (2005).

    Book  Google Scholar 

  2. M. V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla and F. Carrasco-Marin, Carbon, 37, 1215 (1999).

    Article  CAS  Google Scholar 

  3. J.A. Menendez, J. Phillipse, B. Xia and L. R. Radovic, Langmuir, 12, 4404 (1996).

    Article  CAS  Google Scholar 

  4. S. S. Barton, M. J. B. Evans, E. Halliop and J.A. F. MacDonald, Carbon, 35, 1361 (1997).

    Article  CAS  Google Scholar 

  5. L. R. Radovic, I. F. Silva, J. I. Ume, J.A. Menendez, C.A. Leon y Leon and A.W. Scaroni, Carbon, 35, 1339 (1997).

    Article  CAS  Google Scholar 

  6. Y. F. Jia and K. M. Thomas, Langmuir, 16, 1114 (2000).

    Article  CAS  Google Scholar 

  7. C. Moreno-Castilla, M.V. Lopez-Ramon and F. Carrasco-Marin, Carbon, 38, 1995 (2000).

    Article  CAS  Google Scholar 

  8. M.A. Montes-Moran, D. Suarez, J.A. Menendez and E. Fuente, Carbon, 42, 1219 (2004).

    Article  CAS  Google Scholar 

  9. J. Jaramillo, V. Gomez-Serrano and P. M. Alvarez, J. Hazard. Mater., DOI:10.1016/j.jhazmat.2008.04.009 (2008).

  10. P. Vinke, M. Eijk, M. Verbree and A. F. Voskamp, Carbon, 32, 675 (1994).

    Article  CAS  Google Scholar 

  11. J. Choma, W. Burakiewicz-Mortka, M. Jaroniec, Z. Li and J. Klinik, J. Colloid Interface Sci., 214, 438 (1999).

    Article  CAS  Google Scholar 

  12. J. L. Figueiredo, M. F. R. Pereira, M.M. A. Freitas and J. J.M. Orfao, Carbon, 37, 1379 (1999).

    Article  CAS  Google Scholar 

  13. M. Domingo-Garcia, F. J. Lopez-Garzon and M. Perez-Mendoza, J. Colloid Interface Sci., 222, 233 (2000).

    Article  CAS  Google Scholar 

  14. M. Goyal, V.K. Rattan, D. Aggarwal and R. C. Bansal, Colloids Surf. A, 190, 229, (2001).

    Article  CAS  Google Scholar 

  15. G. S. Szymanski, Z. Karpinski, S. Biniak and A. Swiatkowski, Carbon, 40, 2627 (2002).

    Article  CAS  Google Scholar 

  16. D. Aggrarwal, M. Goyal and R.C. Bansal, Carbon, 37, 1989 (1999).

    Article  Google Scholar 

  17. V. Jr. Strelko and D. J. Malik, J. Colloid Interface Sci., 250, 213 (2002).

    Article  CAS  Google Scholar 

  18. A. Swiatkowski, M. Pakula, S. Biniak and M. Walczyk, Carbon, 42, 3057 (2004).

    Article  CAS  Google Scholar 

  19. B. Xiao and K. M. Thomas, Langmuir, 20, 4566 (2004).

    Article  CAS  Google Scholar 

  20. S. Haydar, M.A. Ferro-Garcia, J. Rivera-Utrilla and J. P. Joly, Carbon, 41, 387 (2003).

    Article  CAS  Google Scholar 

  21. S. Sato, K. Yoshida, K. Moriyama, M. Machida and H. Tatsumoto, Appl. Surf. Sci., 253, 8554 (2007).

    Article  CAS  Google Scholar 

  22. M.M. Dubinin and M. M. Serpinsky, Carbon, 19, 402 (1981).

    Article  CAS  Google Scholar 

  23. K. Kaneko, Y. Hanazawa, T. Iiyama, T. Kanda and T. Suzuki, Adsorption, 5, 7 (1999).

    Article  CAS  Google Scholar 

  24. D. D. Do and H. D. Do, Carbon, 38, 767 (2000).

    Article  CAS  Google Scholar 

  25. F. Rodriguez-Reinoso, M. Molina-Sabio and M. A. Munecas, J. Phys. Chem., 96, 2707 (1992).

    Article  CAS  Google Scholar 

  26. C. Moreno-Castilla, M.A. Ferro-Garcia, J. P. Joly, I. Bautista-Toledo, F. Carrasco-Marin and J. Rivera-Utrilla, Langmuir, 11, 4386 (1995).

    Article  CAS  Google Scholar 

  27. V. Jr. Strelko, D. J. Malik and M. Streat, Carbon, 40, 95 (2002).

    Article  CAS  Google Scholar 

  28. A. H. El-Sheikh, Talanta, 75, 127 (2008).

    Article  CAS  Google Scholar 

  29. Y. Ngernyen, C. Tangsathitkulchai and M. Tangsathitkulchai, Korean J. Chem. Eng., 23, 1046 (2006).

    Article  CAS  Google Scholar 

  30. A. Klijanienko, E. Lorence-Grabowska and G. Gryglewicz, Bioresour. Technol., 99, 7208 (2008).

    Article  CAS  Google Scholar 

  31. P. Patnukao and P. Pavasant, Bioresour. Technol., 99, 8540 (2008).

    Article  CAS  Google Scholar 

  32. D.D. Do, Adsorption analysis: Equilibria and kinetics, Imperial College Press, Singapore (1998).

    Google Scholar 

  33. H. P. Boehm, Adv. Catal., 16, 179 (1966).

    Article  CAS  Google Scholar 

  34. H. P. Boehm, Carbon, 32, 759 (1994).

    Article  CAS  Google Scholar 

  35. F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by powders and porous solids, Academic Press, London (1999).

    Google Scholar 

  36. C. Moreno-Castella, F. Carrasco-Marin, F. J. Maldonado-Hodar and J. Rivera-Utrilla, Carbon, 36, 145 (1998).

    Article  Google Scholar 

  37. G. de la Puente, J. J. Pis, J.A. Menendez and P. Grange, J. Anal. Appl. Pyrolysis, 43, 125 (1997).

    Article  Google Scholar 

  38. M. Domingo-Garcia, F. J. Lopez-Garzon and F. J. Perez-Mendoza, J. Colloid Interface Sci., 248, 116 (2002).

    Article  CAS  Google Scholar 

  39. A. Contescu, M. Vass, C. Contescu, K. Putyera and J.A. Schwarz, Carbon, 36, 247 (1998).

    Article  CAS  Google Scholar 

  40. T. Cordero, J. Rodriguez-Mirasol, N. Tancredi, J. Piriz, G. Vivo and J. J. Rodriguez, Ind. Eng. Chem. Res., 41, 6042 (2002).

    Article  CAS  Google Scholar 

  41. G. R. Birkett and D. D. Do, Mol. Phys., 104, 623 (2006).

    Article  CAS  Google Scholar 

  42. S. Junpirom, C. Tangsathitkulchai, M. Tangsathitkulchai and Y. Ngernyen, Korean J. Chem. Eng., 25, 825 (2008).

    Article  CAS  Google Scholar 

  43. M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon Press, Oxford (1987).

    Google Scholar 

  44. D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms to application, Academic Press, San Diego (2001).

    Google Scholar 

  45. W. A. Steele, Appl. Surf. Sci., 196, 3 (2002).

    Article  CAS  Google Scholar 

  46. D. D. Do and H. D. Do., Adsorpt. Sci. Technol., 21, 389 (2003).

    Article  CAS  Google Scholar 

  47. S. A. Dastgheib and D. A. Rockstraw, Carbon, 40, 1843 (2002).

    Article  CAS  Google Scholar 

  48. M. Pesavento, A. Profumo, G. Alberti and F. Conti, Anal. Chim. Acta, 480, 171 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaiyot Tangsathitkulchai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tangsathitkulchai, C., Ngernyen, Y. & Tangsathitkulchai, M. Surface modification and adsorption of eucalyptus wood-based activated carbons: Effects of oxidation treatment, carbon porous structure and activation method. Korean J. Chem. Eng. 26, 1341–1352 (2009). https://doi.org/10.1007/s11814-009-0197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0197-4

Key words

Navigation