Skip to main content
Log in

Comparison of activated carbon from bitter orange and Amygdalus scoparia Spach and surface modification

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Activated nanocarbons are suitable adsorbents for the removal of metal cations from aqueous solutions, and surface modification is an essential technique for developing this efficiency. In this study, activated carbon was first synthesized by the chemical activation method from bitter orange wood and Amygdalus scoparia Spach, which are used as inexpensive raw materials for activated carbon synthesis. Parameters affecting synthesis include the type of chemical activator (potassium hydroxide, phosphoric acid, and nitric acid), activation time (30 to 90 min), activation temperature (400 to 600 °C), and initial particle size (200 to 400 microns) that optimized based on the Taguchi method. Then, the process of synthesis and surface modification of activated carbon was investigated using detection analyses. The results of FT-IR spectroscopy with elemental analysis indicated that the surface modification was successful at each stage, and the presence of epoxide, carbonyl, amino, and thiol functional groups on the activated carbon surface was confirmed. According to FESEM images, the synthesized particles were three-dimensional with an average thickness of 400–300 nm. Nitrogen uptake and desorption tests followed type I isotherms before surface modification and type II isotherms after surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jahangiri A, Amer E (2017) Experimental investigation on cadmium ions removal from aqueous solutions by modified wheat straw bio sorbent. J Enviorn Sci Tech 19(1):31–47. https://doi.org/10.22034/jest.2017.10307

    Article  Google Scholar 

  2. Javidi Alsadi K, Esfandiari N (2019) Synthesis of activated carbon from sugarcane bagasse and application for mercury adsorption. Pollution 5:585–596. https://doi.org/10.22059/poll.2019.269364.540

    Article  Google Scholar 

  3. Rathi BS, Kumar PS (2021) Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Enviorn Pollution 280:116995. https://doi.org/10.1016/j.envpol.2021.116995

    Article  Google Scholar 

  4. Tamjidi S, Esmaeili H (2019) Chemically modified CaO/Fe3O4 nanocomposite by sodium dodecyl sulfate for Cr (III) removal from water. Chem Eng Technol 42(3):607–616. https://doi.org/10.1002/ceat.201800488

    Article  Google Scholar 

  5. Zhao S, Liao Z, Fane A, Li J, Tang C, Zheng C, Lin J, Kong L (2021) Engineering antifouling reverse osmosis membranes. J Desalination 499:114857. https://doi.org/10.1016/j.desal.2020.114857

    Article  Google Scholar 

  6. Ali J, Tuzen M, Kazi TG (2020) Green and innovative technique develop for the determination of vanadium in different types of water and food samples by eutectic solvent extraction method. J Food chem 306:125638. https://doi.org/10.1016/j.foodchem.2019.125638

    Article  Google Scholar 

  7. Andhare DD, Patade SR, Kounsalye JS, Javdah KM (2020) Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticle synthesized via co-precipitation method. Physica B: J Condens Matter 583:412051. https://doi.org/10.1016/j.physb.2020.412051

    Article  Google Scholar 

  8. Han Z, Guo Y, Yang W, Tang R, Wang H, Wu S (2020) Removal of mercury from flue gases over iron modified activated carbon made by in situ ion exchange method. J Energy Inst 93(4):1411–1418. https://doi.org/10.1016/j.joei.2020.01.003

    Article  Google Scholar 

  9. Ding H, Wu W, Jiang C, Ding Y, Bian W, Hu B, Singh P, Orme CJ, Wang L, Zhang Y, Ding D (2020) Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nature Communications J Energy Inst 11(1):1–11. https://doi.org/10.1016/j.joei.2020.01.003

    Article  Google Scholar 

  10. Mironyuk I, Mykytyn I, Vasylyeva H, Savka K (2020) Sodium-modified mesoporous TiO2: sol-gel synthesis, characterization and adsorption activity toward heavy metal cations. J Mol Liq 316:113840. https://doi.org/10.1016/j.molliq.2020.113840

    Article  Google Scholar 

  11. Pandová I, Rimár M, Panda A, Valíček J, Kuserova M, Harničárová M (2020) A study of using natural sorbent to reduce iron cations from aqueous solutions. J Environ Res Public Health 17(10):3686. https://doi.org/10.3390/ijerph17103686

    Article  Google Scholar 

  12. Prince JI, Sivakumar A, Kamil MSM, Cheralathan KK, Lakshmipathy R (2019) Synthesis of zeolite/activated carbon composite material for the removal of lead (II) and cadmium (II) ions. Environ Prog Sustain Energy 38(6):e13246. https://doi.org/10.1002/ep.13246

    Article  Google Scholar 

  13. Sharififard H, shahraki ZH, Rezvanpanah E, Rad SH (2018) A novel natural chitosan/activated carbon/iron bio-nanocomposite: sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process. Bioresour Technol 270:562–569. https://doi.org/10.1016/j.biortech.2018.09.094

    Article  Google Scholar 

  14. Ma W, Meng F, Cheng Z, Xin G, Duan S (2015) Synthesis of macroporous silica biomass nanocomposite based on XG/MgSiO3 for the removal of toxic ions. Bioresour Technol 186:356–359. https://doi.org/10.1016/j.biortech.2015.03.133

    Article  Google Scholar 

  15. Mokadem Z, Mekki S, Saïdi-Besbes S, Agusti G, Elaissari A, Derdour A (2017) Triazole containing magnetic core-silica shell nanoparticles for Pb2+, Cu2+ and Zn2+ removal. Arab J Chem 10(8):1039–1051. https://doi.org/10.1016/j.arabjc.2016.12.008

    Article  Google Scholar 

  16. Mandal S, Calderon J, Marpu SB, Omary MA, Shi SQ (2021) Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: characterization, adsorption kinetics, and isotherm studies. J Contam Hydrol 243:103869. https://doi.org/10.1016/j.jconhyd.2021.103869

    Article  Google Scholar 

  17. Shahrashoub M, Bakhtiari S (2021) The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater 311:110692. https://doi.org/10.1016/j.micromeso.2020.110692

    Article  Google Scholar 

  18. Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J (2021) High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms. Chemosphere 264(1):128455. https://doi.org/10.1016/j.chemosphere.2020.128455

    Article  Google Scholar 

  19. Sherugar P, Padaki M, Naik NS, George SD, Murthy DHK (2022) Biomass-derived versatile activated carbon removes both heavy metals and dye molecules from wastewater with near-unity efficiency: mechanism and kinetics. Chemosphere 287(2):132085. https://doi.org/10.1016/j.chemosphere.2021.132085

    Article  Google Scholar 

  20. Peláez-Cid AA, Romero-Hernández V, Herrera-González AM, Bautista-Hernández A, Coreño-Alonso O (2020) Synthesis of activated carbons from black sapote seeds, characterization and application in the elimination of heavy metals and textile dyes. Chin J Chem Eng 28(2):613–623. https://doi.org/10.1016/j.cjche.2019.04.021

    Article  Google Scholar 

  21. Rahmani-Sani A, Singh P, Raizada P, Lima EC, Anastopoulos I, Giannakoudakis DA, Sivamani S, Dontsova TA, Hosseini-Bandegharaei A (2020) Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresour Technol 297:122452. https://doi.org/10.1016/j.biortech.2019.122452

    Article  Google Scholar 

  22. Karapınar HS (2022) Adsorption performance of activated carbon synthesis by ZnCl2, KOH, H3PO4 with different activation temperatures from mixed fruit seeds. Environ Technol 43(9):1417–1435. https://doi.org/10.1080/09593330.2021.1968507

    Article  Google Scholar 

  23. Bai X, Quan B, Kang C, Zhang X, Zheng Y, Song J, Xia T, Wang M (2022) Activated carbon from tea residue as efficient absorbents for environmental pollutant removal from wastewater. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02316-4

    Article  Google Scholar 

  24. Nguyen NT, Dao TH, Truong TT, Nguyen TMT, Pham TD (2020) Adsorption characteristic of ciprofloxacin antibiotic onto synthesized alpha alumina nanoparticle with surface modification by polyanion. J Molecular Liquids 309:113150. https://doi.org/10.1016/j.molliq.2020.113150

    Article  Google Scholar 

  25. Mai NT, Nguyen MN, Tsubota T, Nguyen PLT, Nguyen NH (2021) Evolution of physico-chemical properties of Dicranopteris linearis-derived activated carbon under various physical activation atmospheres. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-93934-x

    Article  Google Scholar 

  26. Ahmed MB, Johir MAH, Zhou JL, Ngo HH, Nghiem LD, Richardson C, Moni MA, Bryant MR (2019) Activated carbon preparation from biomass feedstock: clean production and carbon dioxide adsorption. J Clean Prod 225:405–413. https://doi.org/10.1016/j.jclepro.2019.03.342

    Article  Google Scholar 

  27. Van LK, Thu TLT (2019) Preparation of pore-size controllable activated carbon from rice husk using dual activating agent and its application in super capacitor. J Chem Eng 215:400–413. https://doi.org/10.1155/2019/4329609

    Article  Google Scholar 

  28. Duan XL, Yuan CG, Jing TT, Yuan XD (2019) Removal of elemental mercury using large surface area micro-porous corn cob activated carbon by zinc chloride activation. J Fuel 239:830–840. https://doi.org/10.1016/j.fuel.2018.11.017

    Article  Google Scholar 

  29. Sajjadi SA, Mohammadzadeh A, Tran HN, Anastopoulos I, Dotto GL, Lopičić ZR, Sivamani S, Rahmani-Sani A, Ivanets A, Hosseini-Bandegharaei A (2018) Efficient mercury removal from wastewater by pistachio wood wastes-derived activated carbon prepared by chemical activation using a novel activating agent. J Environ Manag 223:1001–1009. https://doi.org/10.1016/j.jenvman.2018.06.077

    Article  Google Scholar 

  30. Elkady M, Shokry H, Hamad H (2020) New activated carbon from mine coal for adsorption of dye in simulated water or multiple heavy metals in real wastewater. Materials 13(11):13112498. https://doi.org/10.3390/ma13112498

    Article  Google Scholar 

  31. Zheng J, Lin T, Chen W, Tao H, Tan Y, Ma B (2018) Removal of precursors of typical nitrogenous disinfection byproducts in ozonation integrated with biological activated carbon (O3/BAC). Chemosphere 209:68–77. https://doi.org/10.1016/j.chemosphere.2018.06.018

    Article  Google Scholar 

  32. Chu Y, Khan MA, Xia M, Lei W, Wang F, Zhu S, Yan X (2020) Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead (II) and copper (II) adsorption from wastewater. Chem Eng Res Design 157:142–152. https://doi.org/10.1016/j.cherd.2020.02.020

    Article  Google Scholar 

  33. Sato S, Nakamura K, Nakamura H (2017) Horseradish-peroxidase-catalyzed tyrosine click reaction. Chem Bio Chem 18(5):475–478. https://doi.org/10.1002/cbic.201600649

    Article  Google Scholar 

  34. Marzougui Z, Chaabouni A, Eissa MM, Elleuch B, Elaissari A (2015) Itaconic acid-functionalized magnetic latex particles for Pb 2 + removal. Sci adv mater 7(3):558–570. https://doi.org/10.1166/sam.2015.2140

    Article  Google Scholar 

  35. Chaabouni A, Marzougui Z, Elleuch B, Eissa MM, Elaissari A (2013) Aminodextran magnetic colloidal particles for heavy metals removal. Sci Adv Mater 5(7):854–864. https://doi.org/10.1166/sam.2013.1509

    Article  Google Scholar 

  36. Marzougui Z, Chaabouni A, Elleuch B, Elaissari A (2016) Removal of bisphenol A and some heavy metal ions by polydivinylbenzene magnetic latex particles. Environ Sci Pollut Res 23(16):15807–15819. https://doi.org/10.1007/s11356-015-5407-5

    Article  Google Scholar 

  37. Kavand M, Eslami P, Razeh L (2020) The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: optimization of the single and binary systems. J Water Process Eng 34:101151. https://doi.org/10.1016/j.jwpe.2020.101151

    Article  Google Scholar 

  38. Wu N, Li Z (2013) Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water. Chem Eng J 215–216:894–902. https://doi.org/10.1016/j.cej.2012.11.084

    Article  Google Scholar 

  39. Norouzi Jobie F, Ranjbar M, Hajizadeh Moghaddam A, Kiani M (2021) Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. Adv Powder Technol 32(6):2043–2052. https://doi.org/10.1016/j.apt.2021.04.014

    Article  Google Scholar 

  40. Baloji D, Anil K, Satyanarayana K, ul Haq A, Singh SK, Naik MT (2019) Evaluation and optimization of material properties of ASS316L at sub-zero temperature using Taguchi robust design. Mat Today: Proceedings 18:4475–4481. https://doi.org/10.1016/j.matpr.2019.07.417

    Article  Google Scholar 

  41. Karimpour SR, Besmi MR, Mirimani SM (2020) Optimal design and verification of interior permanent magnet synchronous generator based on FEA and Taguchi method. Int Transactions Elec Eng Sys 30(11):12597. https://doi.org/10.1002/2050-7038.12597

    Article  Google Scholar 

  42. Anirudhan TS, Manjusha V, Shainy F (2021) Magnetically retrievable cysteine modified graphene oxide@ nickelferrite@ titanium dioxide photocatalyst for the effective degradation of chlorpyrifos from aqueous solutions. Environ Tech Inn 23:101633. https://doi.org/10.1016/j.eti.2021.101633

    Article  Google Scholar 

  43. Jain A, Tripathi S (2014) Fabrication and characterization of energy storing super capacitor devices using coconut shell based activated charcoal electrode. Mater Sci Eng 183:54–60. https://doi.org/10.1016/j.mseb.2013.12.004

    Article  Google Scholar 

  44. Nemati F, Jafari D, Esmaeili H (2021) Highly efficient removal of toxic ions by the activated carbon derived from citrus lemon tree leaves. Carbon Lett 31(3):509–521. https://doi.org/10.1007/s42823-020-00181-7

    Article  Google Scholar 

  45. Malik R, Ramteke DS, Wate SR (2007) Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manag 27(9):1129–1138. https://doi.org/10.1016/j.wasman.2006.06.009

    Article  Google Scholar 

  46. Nawaz R, Hussain I, Noor S, Habib T, Omair M (2020) The significant impact of the economic sustainability on the cement industry by the assessment of the key performance indicators using Taguchi signal to noise ratio. Cogent Eng 7(1):1810383. https://doi.org/10.1080/23311916.2020.1810383

    Article  Google Scholar 

  47. Ralib AAM, Nordin AN (2019) Application of Taguchi signal to noise ratio design method to ZnO thin film CMOS SAW resonators. IEEE Access 7:27993–28000. https://doi.org/10.1109/ACCESS.2019.2900590

    Article  Google Scholar 

  48. Tyagi A, Banerjee S, Singh S, Kar KK (2019) Biowaste derived activated carbon electrocatalyst for oxygen reduction reaction: effect of chemical activation. Int J Hydrogen Energy 45:16930. https://doi.org/10.1016/j.ijhydene.2019.06.195

    Article  Google Scholar 

  49. Gao Y, Yue Q, Gao B, Li A (2020) Review insight into activated carbon from different kinds of chemical activating agents: a review. Sci Total Environ 746:141094. https://doi.org/10.1016/j.scitotenv.2020.141094

    Article  Google Scholar 

  50. Xu J, Chen L, Qu H, Jiao Y, Xie J, Xing G (2014) Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4. Appl Surf Sci 320:647–680. https://doi.org/10.1016/j.apsusc.2014.08.178

    Article  Google Scholar 

  51. Li Y, Zhang X, Yang R, Li G, Hu C (2015) The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue. RSC Adv 5(41):32626–32636. https://doi.org/10.1039/C5RA04634C

    Article  Google Scholar 

  52. Patnukao P, Pavasant P (2008) Activated carbon from Eucalyptus camaldulensis Dehn bark using phosphoric acid activation. Bioresour Technol 99(17):8540–8543. https://doi.org/10.1016/j.biortech.2006.10.049

    Article  Google Scholar 

  53. Attia AA, Girgis BS, Fathy NA (2008) Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch and column studies. Dyes Pigm 76(1):282–289. https://doi.org/10.1016/j.dyepig.2006.08.039

    Article  Google Scholar 

  54. Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M (2011) Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276(1–3):53–59. https://doi.org/10.1016/j.desal.2011.03.013

    Article  Google Scholar 

  55. Mohammadi SZ, Karimi MA, Yazdy SN, Shamspur T, Hamidian H (2014) Removal of Pb(II) ions and malachite green dye from wastewater by activated carbon produced from lemon peel. Quim Nova 37(5):804–809. https://doi.org/10.5935/0100-4042.20140129

    Article  Google Scholar 

  56. Abdulkarim M, Al-Rub FA (2004) Adsorption of lead ions from aqueous solution onto activated carbon and chemically-modified activated carbon prepared from date pits. Adsorp Sci Technol 22:119–134. https://doi.org/10.1260/026361704323150908

    Article  Google Scholar 

  57. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18:393–415. https://doi.org/10.1007/s10311-019-00955-0

    Article  Google Scholar 

  58. Pezoti O, Cazetta AL, Bedin KC, Souza LS, Martins AC, Silva TL, Santos Júnior OO, Visentainer JV, Almeida VC (2016) NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies. Chem Eng J 288:778–788. https://doi.org/10.1016/j.cej.2015.12.042

    Article  Google Scholar 

  59. Reffas A, Bernardet V, David B, Reinert L, Lehocine MB, Dubois M, Batisse N, Duclaux L (2010) Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and Nylosan Red N-2RBL. J Hazard Mater 175(1–3):779–788. https://doi.org/10.1016/j.jhazmat.2009.10.076

    Article  Google Scholar 

  60. Ould-Idriss A, Stitou M, Cuerda-Correa EM, Fernández-González C, Macías-García A, Alexandre-Franco MF, Gómez-Serrano V (2011) Preparation of activated carbons from olive-tree wood revisited. I. Chemical activation with H3PO4. Fuel Process Technol 92(2):261–265. https://doi.org/10.1016/j.fuproc.2010.05.011

    Article  Google Scholar 

  61. Sun Y, Li H, Li G, Gao B, Yue Q, Li X (2016) Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour Technol 217:239–244. https://doi.org/10.1016/j.biortech.2016.03.047

    Article  Google Scholar 

  62. Park JE, Lee GB, Hong BU, Hwang SY (2019) Regeneration of activated carbons spent by wastewater treatment using KOH chemical activation. App Sci 9(23):5132. https://doi.org/10.3390/app9235132

    Article  Google Scholar 

  63. de Yuso AM, Rubio B, Izquierdo MT (2014) Influence of activation atmosphere used in the chemical activation of almond shell on the characteristics and adsorption performance of activated carbons. Fuel Process Technol 119:74–80. https://doi.org/10.1016/j.fuproc.2013.10.024

    Article  Google Scholar 

  64. Erdoğan S, Başar CA, Önal Y (2017) Particle size effect of raw material on the pore structure of carbon support and its adsorption capability. Particul Sci Technol 35(3):330–337. https://doi.org/10.1080/02726351.2016.1154911

    Article  Google Scholar 

  65. Ali R, Aslam Z, Shawabkeh RA, Anam A, Ibnelwaleed AH (2019) BET, FTIR, and RAMAN characterizations of activated carbon from waste oil fly ash. Turkish J Chem 44(2):279–295. https://doi.org/10.3906/kim-1909-20

    Article  Google Scholar 

  66. Liu Z, Fu G, Li J, Liu Z, Xu L, Sun D, Tang Y (2018) Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res 11(9):4686–4696. https://doi.org/10.1007/s12274-018-2051-7

    Article  Google Scholar 

  67. Nandiyanto ABD, Oktiani R, Ragadhita R (2019) How to read and interpret FTIR spectroscope of organic material. Indonesian J Sci Tech 4(1):97–118. https://doi.org/10.17509/ijost.v4i1

    Article  Google Scholar 

  68. Sarswat A, Mohan D (2016) Sustainable development of coconut shell activated carbon (CSAC) & a magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal. RSC Adv 6:85390–85410. https://doi.org/10.1039/C6RA19756F

    Article  Google Scholar 

  69. Bandura L, Panek R, Madej J, Franus W (2021) Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel 283:119173. https://doi.org/10.1016/j.fuel.2020.119173

    Article  Google Scholar 

  70. Sadeghi A, Esfandiari N, Honarvar B, Azdarpour A, Aboosadi ZA (2022) Investigation of lead adsorption from synthetic effluents by modified activated carbon particles using the response surface methodology. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02585-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Esfandiari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, E., Esfandiari, N., Honarvar, B. et al. Comparison of activated carbon from bitter orange and Amygdalus scoparia Spach and surface modification. Biomass Conv. Bioref. 13, 17255–17269 (2023). https://doi.org/10.1007/s13399-022-03024-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03024-9

Keywords

Navigation