Skip to main content
Log in

Effect of pyrolysis temperature on the char micro-structure and reactivity of NO reduction

  • [Closed] Clean Energy (The 7th Korea-China Clean Energy Technology Symposium)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A phenol-formaldehyde resin (PFR) and a bituminous coal (SH) were pyrolyzed at various temperatures. The structure and the char-NO reactivity were analyzed in order to examine the effect of pyrolysis temperature on the micro-structure of the resulting char and further on the reactivity towards NO. Micro-structure of the char samples was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy. It was indicated that the micro-structure of PFR char and coal char experienced remarkable changes during pyrolysis, which resulted in the decrease of phenolic OH, aromatic hydrogen and more ordered structure. The pyrolysis temperature showed a weak impact on the reactivity of PFR char but comparatively remarkable impact on that of coal char at lower reaction temperature. Mineral matter in coal char presented a weak effect on the reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Xu, H. Tong, C. Chen and X. Xu, Korean J. Chem. Eng., 25, 53 (2008).

    Article  CAS  Google Scholar 

  2. P. Qiu, S. Wu, S. Sun, H. Liu, L. Yang and G. Wang, Korean J. Chem. Eng., 24, 683 (2007).

    Article  CAS  Google Scholar 

  3. D. Klvana, J. Kirchnerova and C. Tofan, Korean J. Chem. Eng., 16, 470 (1999).

    Article  CAS  Google Scholar 

  4. I. Aarna and E. M. Suuberg, Fuel, 76, 475 (1997).

    Article  CAS  Google Scholar 

  5. E. M. Suuberg and I. Aarna, Kinetics and mechanism of NOx-char reduction, Final Report DE-FG22-94PC94218 (1998).

  6. Y. H. Li, G. Q. Lu and V. Rudolph, Chem. Eng. Sci., 53, 1 (1998).

    Article  CAS  Google Scholar 

  7. A. Tomita, Fuel Proc. Tech., 71, 53 (2001).

    Article  CAS  Google Scholar 

  8. Y.-C. Bak, Korean J. Chem. Eng., 15, 336 (1998).

    Article  CAS  Google Scholar 

  9. Z. Zhao, J. Qiu, W. Li, H. Chen and B. Li, Fuel, 82, 949 (2003).

    Article  CAS  Google Scholar 

  10. M. J. Illan-Gomez, A. Linaes-Solano, L. R. Radovic and C. Salinas-Martinez de Lecea, Energ. Fuel, 10, 158 (1996).

    Article  CAS  Google Scholar 

  11. E. G. Garijo, A. D. Jensen and P. Glarborg, Energ. Fuel., 17, 1429 (2003).

    Article  CAS  Google Scholar 

  12. Y. Takeuchi, K. Yanagisawa, Y. Tanaka and N. Tsuruoka, Korean J. Chem. Eng., 14, 377 (1997).

    Article  CAS  Google Scholar 

  13. S.-J. Moon and S.-K. Ihm, Korean J. Chem. Eng., 11, 111 (1994).

    Article  CAS  Google Scholar 

  14. L. R. Radovic, P. L. Walker and R.G. Jenkins, Fuel, 62, 849 (1983).

    Article  CAS  Google Scholar 

  15. O. Senneca, P. Russo, P. Salatino and S. Masi, Carbon, 35, 141 (1997).

    Article  CAS  Google Scholar 

  16. L. Lu, C. Kong, V Sahajwalla and D. Harris, Fuel, 81, 1215 (2002).

    Article  CAS  Google Scholar 

  17. A. Arenillas, F. Rubiera, J. J. Pis, J. M. Jones and A. Williams, Fuel, 78, 1779 (1999).

    Article  CAS  Google Scholar 

  18. A. Garcia-Garcia, M. J. Illan-Gomez, A. Linares-Solano and C. Salinas-Martinez de Lecea, Fuel Proc. Tech., 61, 289 (1999).

    Article  CAS  Google Scholar 

  19. J. Yang, E. Sanchez-Cortezon, N. Pfander, U. Wild, G. Mestl, J. Find and R. Schlogl, Carbon, 38, 2029 (2000).

    Article  CAS  Google Scholar 

  20. P. C. Painter, M. M. Coleman, R.W. Snyder, O. Mahajan, M. Komatsu and P. L. Walker, Appl. Spec., 35, 106 (1981).

    Article  CAS  Google Scholar 

  21. C.-L. Liu, W.-S. Dong, J.-R. Song and L. Liu, Mat. Sci. Eng. A, 459, 347 (2007).

    Article  Google Scholar 

  22. N. E. Cooke, O. M. Fuller and R. P. Gaikwad, Fuel, 65, 1254 (1986).

    Article  CAS  Google Scholar 

  23. J. Ibarra, R. Moliner and A. J. Bonet, Fuel, 73, 918 (1994).

    Article  CAS  Google Scholar 

  24. M. L. Chan, J. M. Jones, M. Pourkashanian and A. Williams, Fuel, 78, 1539 (1999).

    Article  CAS  Google Scholar 

  25. T.-H. Ko, W.-S. Kuo and Y.-H. Chang, Polym. Composite, 21, 745 (2000).

    Article  CAS  Google Scholar 

  26. L. E. Alexander and E. C. Sommer, J. Phys. Chem., 60, 1646 (1956).

    Article  CAS  Google Scholar 

  27. A.G. Alvarez, M. Martinez-Escandell, M. Molina-Sabio and F. Rodriguez-Reinoso, Carbon, 37, 1627 (1999).

    Article  CAS  Google Scholar 

  28. L. Lu, V. Sahajwalla and D. Harris, Energ. Fuel, 14, 869 (2000).

    Article  CAS  Google Scholar 

  29. F. G. Emmerich, Carbon, 33, 1709 (1995).

    Article  CAS  Google Scholar 

  30. C. Sheng, Fuel, 86, 2316 (2007).

    Article  CAS  Google Scholar 

  31. A. Sadezky, H. Muckenhuber, H. Grothe R. Niessner and U. Posschl, Carbon, 43, 1731 (2005).

    Article  CAS  Google Scholar 

  32. A. C. Ferrari and J. Robertson, Phys. Rev. B, 61, 14095 (2000).

    Google Scholar 

  33. O. Beyssac, B. Goffe, J. P. Petitet, E. Froigneux, M. Moreau and J. N. Rouzaud, Spectrochim. Acta. A, 59, 2267 (2003).

    Article  Google Scholar 

  34. F. Tuinstra and J. L. Koenig, J. Chem. Phys., 53, 1126 (1970).

    Article  CAS  Google Scholar 

  35. K. M. Thomas, Fuel, 76, 457 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changdong Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Zhang, J. & Sheng, C. Effect of pyrolysis temperature on the char micro-structure and reactivity of NO reduction. Korean J. Chem. Eng. 26, 895–901 (2009). https://doi.org/10.1007/s11814-009-0150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0150-6

Key words

Navigation