Skip to main content
Log in

Kinetic modeling of non-hydrocarbon/nitric oxide interactions in a flow reactor above 1,400K

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The reduction of nitric oxide by reaction with non-hydrocarbon fuels under reducing conditions at comparatively higher temperature has been studied with a detailed chemical kinetic model. The reaction mechanism consists of 337 elementary reactions between 65 chemical species based on the newest rate coefficients. The experimental data were adopted from previous work. Analyses by comparing existing experimental data with the modeling predictions of this kinetic mechanism indicate that, at comparatively high temperature, apart from the reaction path NO→HNO→NH→N2, NO+N→N2 is also prominent. In the presence of CO, NO is partly converted to N by reaction with CO. Based on present model, the reduction of NO at high temperature, which was usually underestimated by previous work, can be improved to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Bromly, F. J. Barnes, S. Muris, X. You and B. S. Haynes, Combustion Science and Technology, 115, 259 (1996).

    Article  CAS  Google Scholar 

  2. R. Bilbao, M. U. Alzueta and A. Millera, Ind. Eng. Chem. Res., 34,4531 (1995).

    Article  CAS  Google Scholar 

  3. R. Bilbao, M. U. Alzueta, A. Millera and L. Prada, Fuel, 76, 1401 (1997).

    Article  CAS  Google Scholar 

  4. M. U. Alzueta, P. Glarborg and K. Dam-Johansen, Combustion and Flame, 109, 25 (1997).

    Article  Google Scholar 

  5. P. Glarborg, M. U. Alzueta, K. Dam-Johansen and J. A. Miller, Combustion and Flame, 115, 1 (1998).

    Article  CAS  Google Scholar 

  6. I. Giral and M. U. Alzueta, Fuel, 81, 2263 (2002).

    Article  CAS  Google Scholar 

  7. P. Qiu, S. Wu, S. Sun, H. Liu, L. Yang and G. Wang, Korean J. Chem. Eng., 24, 683 (2007).

    Article  CAS  Google Scholar 

  8. S. L. Chen, J.M. McCarthy, W. D. Clark, M. P. Heap, W. R. Seeker and D.W. Pershing, Twenty-first symposium (international) on combustion, The Combustion Institute, 1159 (1986).

  9. P. Glarborg, P.G. Kristensen, K. Dam-Johansen, M. U. Alzueta, A. Millera and R. Bilbao, Energy & Fuels, 14, 828 (2000).

    Article  CAS  Google Scholar 

  10. S. Sun, L. Qian, Z. Wang, H. Cao and Y. Qin, Power Engineering, 28(4), 265 (2008).

    CAS  Google Scholar 

  11. P. G. Kristensen, P. Glarborg and K. Dam-Johansen, Combust. Flame, 107, 211 (1996).

    Article  CAS  Google Scholar 

  12. R. Bilbao, M. U. Alzueta and A. Millera, Ind. Eng. Chem. Res., 33,2846 (1994).

    Article  CAS  Google Scholar 

  13. O. Skreiberg, P. Kilpinen and P. Glarborg, Combustion and Flame, 136, 501 (2004).

    Article  CAS  Google Scholar 

  14. R. J. Kee, F. Rupley and J. A. Miller, Technical Report SAND87-8215, Sandia National Laboratories (1991).

  15. J. A. Miller and C. T. Bowman, Prog. Energy Combust. Sci., 15, 287 (1989).

    Article  CAS  Google Scholar 

  16. K. Kilmer, T. Vicente and A. Ellis, NIST standard reference database, Gaithersburg, MD (2007).

  17. E. W. G. Diau, M.C. Lin, Y. He and C. F. Melius, Prog. Energy Combust. Sci., 21, 1 (1995).

    Article  CAS  Google Scholar 

  18. W. Tang and J. T. Herron, J. Phys. Chem. Ref. Data, 20, 609 (1991).

    Google Scholar 

  19. J. A. Miller and C. F. Melilus, Symp. Int. Combust. Proc., 24, 719 (1992).

    Article  Google Scholar 

  20. N. Cohen and K. R. Westberg, J. Phys. Chem. Ref. Data, 20, 1211 (1991).

    Article  CAS  Google Scholar 

  21. H. MT. Nguyen, S.W. Zhang, J. Peeters and T. N. Truong, Chem. Phys. Lett., 388, 94 (2004).

    Article  CAS  Google Scholar 

  22. M. R. Soto and M. Page, J. Chem. Phys., 97, 7287 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huali Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Cao, H., Wang, Z. et al. Kinetic modeling of non-hydrocarbon/nitric oxide interactions in a flow reactor above 1,400K. Korean J. Chem. Eng. 26, 840–844 (2009). https://doi.org/10.1007/s11814-009-0140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0140-8

Key words

Navigation