Skip to main content
Log in

Excess molar volumes and molar enthalpies in the binary mixtures of {x1CH3CHClCH2Cl+x2CH3(CH2) n−1OH} (n=1 to 4) at T=298.15K

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The excess molar volumes V E m and excess molar enthalpies H E m at T=298.15 K and atmospheric pressure for the binary systems {x1CH3CHClCH2Cl+x2CH3(CH2) n−1OH} (n=1 to 4) have been determined from density measurements by using a digital vibrating-tube densimeter and an isothermal calorimeter with flow-mixing cell, respectively. The 1-alkanols are methanol, ethanol, 1-propanol and 1-butanol. The V E m values of the binary mixtures increase with chain length of the 1-alkanols, resulting in entire negative V E m values for methanol, ‘S-shaped’ for ethanol, being nega- tive at low and positive at high mole fraction of 1,2-dichloropropane, and entire positive V E m values for both 1-propanol and 1- butanol. The H E m values for all systems show an endothermic effect (positive values), which exhibits a regular increase in magnitude when the number of -CH2- group in 1-alkanols is progressively increased and maximum values of H E m varying from 741 J·mol−1 (methanol) to 1,249 J·mol−1 (1-butanol) around x1=0.63−0.72. The experimental results of both H E m and V E m were fitted to Redlich-Kister equation to correlate the composition dependence. The experimental H E m data were also used to test the suitability of the Wilson, NRTL, and UNIQUAC models. The correlation of excess enthalpy data in these binary systems using UNIQUAC model provides the most appropriate results except for the system containing methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.W. Kim and M.G. Kim, Korean Chem. Eng. Res., 42, 426 (2004).

    CAS  Google Scholar 

  2. J.W. Kim and M.G. Kim, Korean Chem. Eng. Res., 44, 44 (2006).

    Google Scholar 

  3. D. Sen and M. G. Kim, Thermochim. Acta., 471, 20 (2008).

    Article  CAS  Google Scholar 

  4. M. J. O’Neil, P. E. Heckelman, C. B. Koch and K. J. Roman (Eds.), Merck index, 14th ed., Merck Research Laboratories, NJ (2006).

    Google Scholar 

  5. P. Santana, J. Balseiro, J. Salgado, E. Jimenez, J. L. Legido, L. Romani and M. I. Paz-Andrade, J. Chem. Thermodyn., 31, 1329 (1999).

    Article  CAS  Google Scholar 

  6. P. Santana, J. Balseiro, E. Jimenez, C. Franjo, J. L. Legido, L. Romani and M. I. Paz-Andrade, J. Chem. Thermodyn., 31, 547 (1999).

    Article  CAS  Google Scholar 

  7. C. Medina, J. Fernandez, J. L. Legido and M. I. Paz-Andrade, J. Chem. Eng. Data, 47, 411 (2002).

    Article  CAS  Google Scholar 

  8. C. Lafuente, J. Pardo, V. Rodriguez, F. M. Royo and J. S. Urieta, J. Chem. Eng. Data, 38, 554 (1993).

    Article  CAS  Google Scholar 

  9. R. T. Morrison and R. N. Boyd, Organic chemistry, 6th ed., Prentice Hall, NJ (1992).

    Google Scholar 

  10. J. A. Riddick, W. B. Bunger and T. K. Sakano (Eds.), Organic solvents, 4th ed., Wiley-Interscience, NY (1986).

    Google Scholar 

  11. O. Redlich and A. T. Kister, Ind. Eng. Chem., 40, 345 (1948).

    Article  Google Scholar 

  12. G. M. Wilson, J. Am. Chem. Soc., 86, 127 (1964).

    Article  CAS  Google Scholar 

  13. H. Renon and J. M. Prausnitz, AIChE J., 14, 135 (1968).

    Article  CAS  Google Scholar 

  14. D. S. Abrams and J. M. Prausnitz, AIChE J., 21, 116 (1975).

    Article  CAS  Google Scholar 

  15. T. E. Daubert, R. P. Danner, H. M. Sibul and C. C. Stebbins, Physical and thermodynamic properties of pure chemicals: data compilation, part 2, Taylor and Francis, Washington, D.C. (1995).

    Google Scholar 

  16. B. E. Poling, J. M. Prausnitz and J. P. O’Connell, The properties of gases and liquids, 5th ed., McGraw-Hill, NY (2001).

    Google Scholar 

  17. M. G. Kim, S. J. Park and I. C. Hwang, Korean J. Chem. Eng., 25, 1160 (2008).

    Article  Google Scholar 

  18. R. Tanaka, P. J. D’Arcy and G. C. Benson, Thermochim. Acta., 11, 163 (1975).

    Article  CAS  Google Scholar 

  19. A. Chand and D.V. Fenby, J. Chem. Thermodyn., 10, 997 (1978).

    Article  CAS  Google Scholar 

  20. M. J. Costigan, L. J. Hodges, K. N. Marsh, R. H. Stokes and C.W. Tuxford., Aust. J. Chem., 33, 2103 (1980).

    CAS  Google Scholar 

  21. L. Kirkup, Data analysis with excel, Cambridge University Press, Cambridge (2002).

    Google Scholar 

  22. J. B. Ott and J. T. Sipowska, J. Chem. Eng. Data, 41, 987 (1996).

    Article  CAS  Google Scholar 

  23. A. Amigo, J. L. Legido, R. Bravo and M. I. Paz-Andrade, J. Chem. Thermodyn., 21, 1207 (1989).

    Article  CAS  Google Scholar 

  24. A. Amigo, J. L. Legido, R. Bravo and M. I. Paz-Andrade, J. Chem. Thermodyn., 22, 633 (1990).

    Article  CAS  Google Scholar 

  25. A. Amigo, J. L. Legido, R. Bravo and M. I. Paz-Andrade, J. Chem. Thermodyn., 22, 1059 (1990).

    Article  CAS  Google Scholar 

  26. A. Amigo, R. Bravo and M. I. Paz-Andrade, J. Chem. Thermodyn., 23, 679 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Gab Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, D., Kim, MG. Excess molar volumes and molar enthalpies in the binary mixtures of {x1CH3CHClCH2Cl+x2CH3(CH2) n−1OH} (n=1 to 4) at T=298.15K. Korean J. Chem. Eng. 26, 806–811 (2009). https://doi.org/10.1007/s11814-009-0134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0134-6

Key words

Navigation