Skip to main content
Log in

Photochemical reduction of molecular weight and number of double bonds in natural rubber film

  • Materials (Organic, Inorganic, Electronic, Thin Films), Polymer, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Natural rubber (NR) can be degraded depending on various factors such as heat, mechanical force, chemical reaction, and light. Light is a very interesting factor because it can cause the NR to degrade under low temperature and pressure. The photo-degradation of NR films was carried out to investigate the effects of the light and the temperature on the reduction of the weight-average molecular weight (Mw) and the double bonds in the NR films. The NR films, with and without catalysts, titanium dioxide (TiO2), and potassium persulfate (K2S2O8), were exposed to light from a mercury light bulb at 7,000 and 36,000 lux, and at the temperature of 25 °C and 80 °C for 192 hrs. After exposure, the Mw of the NR films was analyzed by gel permeation chromatography (GPC). Changes in the Mw were used to construct a kinetic model for the process, (1/Mw)=(1/Mw0)+(kt/2M0) where k is the rate constant, and M0 is the Mw of the monomer unit. The linear relationship between 1/Mw and time suggested pseudo first-order processes with random scission. The Mw distribution information from the GPC was used to calculate the number of double bonds in the NR films. The trend of the double bonds reduction curves was quite similar to the result obtained from the calculation from the FTIR spectra. This indicated that this calculation method might possibly be another alternative way to obtain the number of double bonds in the NR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kelen, Polymer degradation, Van Nostrand Reinhold, New York (1983).

    Google Scholar 

  2. C. Adam, J. Lacoste and J. Lemaire, Polym. Degrad. Stab., 32, 51 (1991).

    Article  CAS  Google Scholar 

  3. R. N. Christopher and D. Forciniti, Indus. Eng. Chem. Res., 40, 3346 (2001).

    Article  Google Scholar 

  4. A. Copinet, C. Bertran, S. Govindin, V. Coma and Y. Couturier, Chemosphere, 55, 763 (2004).

    Article  CAS  Google Scholar 

  5. C. Naddeo, L. Guadagno and V. Vittoria, Polym. Degrad. Stab., 85, 1009 (2004).

    Article  CAS  Google Scholar 

  6. K.A. M. Santos, P.A. Z. Suarez and J.C. Rubim, Polym. Degrad. Stab., 90, 34 (2005).

    Article  Google Scholar 

  7. J. Gijsman, G. Meijers and G. Vitae, Polym. Degrad. Stab., 65, 433 (1999).

    Article  CAS  Google Scholar 

  8. C. M. Maillo and J.R. White, Plast. Rubb. Comp., 28, 277 (1999).

    CAS  Google Scholar 

  9. A. L. Andrady, S.H. Hamid, X. Hu and A. Torikai, J. Photochem. Photobio. B., 46, 96 (1998).

    Article  CAS  Google Scholar 

  10. I.M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S.G. Neophytides and P. Falaras, Appl. Cat. B., 42, 187 (2003).

    Article  CAS  Google Scholar 

  11. T. Zhang, T. Oyama, S. Horikoshi, J. Zhao, N. Serpone and H. Hidaka, Appl. Cat. B., 42, 13 (2003).

    Article  CAS  Google Scholar 

  12. L. Zhang, Y. Zhu, Y. He, W. Li and H. Sun, Appl. Cat. B., 40, 287 (2003).

    Article  CAS  Google Scholar 

  13. V.A. Sakkas, I. M. Arabatzis, I.K. Konstantinou, A.D. Dimou, T.A. Albanis and P. Falaras, Appl. Cat. B., 49, 195 (2004).

    Article  CAS  Google Scholar 

  14. I.K. Kim, H. J. Ha and S. K. Lee, Korean J. Chem. Eng., 22, 382 (2005).

    Article  CAS  Google Scholar 

  15. S. J. Yoa, Y. S. Cho and J.H. Kim, Korean J. Chem. Eng., 22, 364 (2005).

    Article  CAS  Google Scholar 

  16. R. Thiruvenkatachari, T. O. Kwon and I. S. Moon, Korean J. Chem. Eng., 22, 938 (2005).

    Article  CAS  Google Scholar 

  17. K. N. Kim and M.R. Hoffmann, Korean J. Chem. Eng., 25, 89 (2008).

    Article  CAS  Google Scholar 

  18. D. R. Park, B. J. Ahn, H. S. Park, H. Yamashita and M. Anpo, Korean J. Chem. Eng., 18, 930 (2001).

    Article  CAS  Google Scholar 

  19. S. Cho and W. Choi, J. Photochem. Photobio. A., 143, 221 (2001).

    Article  CAS  Google Scholar 

  20. J. Shang, M. Chai and Y. Zhu, J. Solid. State. Chem., 174, 104 (2003).

    Article  CAS  Google Scholar 

  21. J. Shang, M. Chai and Y. Zhu, Envi. Sci. Tech., 37, 4493 (2003).

    Google Scholar 

  22. H. Kubota, Y. Hariya, S. Kuroda and T. Kondo, Polym. Degrad. Stab., 72, 223 (2001).

    Article  CAS  Google Scholar 

  23. J. P. Roubroeks, R. Andersson, D. I. Mastromauro, B. E. Christensen and P. Aman, Carbo. Polm., 46, 275 (2001).

    Article  CAS  Google Scholar 

  24. C. Tanford, Physical chemistry of macromolecules, Wiley, New York (1961).

    Google Scholar 

  25. H.R. Allcock, F.W. Lampe and J. E. Mark, Contemporary polymer chemistry, Pearson Education, New Jersey (2003).

    Google Scholar 

  26. T. J. Turton and J. R. White, Polym. Degrad. Stab., 74, 559 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wannipha Amatyakul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasakorn, P., Amatyakul, W. Photochemical reduction of molecular weight and number of double bonds in natural rubber film. Korean J. Chem. Eng. 25, 1532–1538 (2008). https://doi.org/10.1007/s11814-008-0252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0252-6

Key words

Navigation