Skip to main content
Log in

Effective combination of non-thermal plasma and catalyst for removal of volatile organic compounds and NOx

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A plasma/catalyst hybrid reactor was designed to overcome the limits of plasma and catalyst technologies. A two-plasma/catalyst hybrid system was used to decompose VOCs (toluene) and NOx at temperature lower than 150 °C. The single-stage type (Plasma-driven catalyst process) is the system in which catalysts are installed in a non-thermal plasma reactor. And the two-stage type (Plasma-enhanced process) is the system in which a plasma and a catalyst reactor are connected in series. The catalysts prepared in this experiment were Pt/TiO2 and Pt/Al2O3 of powder type and Pd/ZrO2, Pt/ZrO2 and Pt/Al2O3 which were catalysts of honeycomb type. When a plasma-driven catalyst reactor with Pt/Al2O3 decomposed only toluene, it removed just more 20% than the only plasma reactor but the selectivity of CO2 was remarkably elevated as compared with only the plasma reactor. In case of decomposing VOCs (toluene) and NOx using plasma-enhanced catalyst reactor with Pt/ZrO2 or Pt/Al2O3, the conversion of toluene to CO2 was nearly 100% and about 80% of NOx was removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Choi, S. K. Kim, S. J. Ha and Y. O. Park, Korean J. Chem. Eng., 18, 456 (2001).

    Article  CAS  Google Scholar 

  2. A. Mizuno and J. S. Clements, US Patent 4,695,358 (1987).

  3. M. B. Chang, M. J. Kushner and M. J. Rood, J. Envi. Eng., 119, 414 (1993).

    Article  CAS  Google Scholar 

  4. O. tokunaga and N. Suzuki, Rad. Phys. Chem., 24, 145 (1984).

    CAS  Google Scholar 

  5. T. Yamamoto, C. L. Yang, M. R. Beltran and Z. Kravets, IEEE Trans. Ind. Applicat., 36, 923 (2000).

    Article  CAS  Google Scholar 

  6. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama and T. Yamamoto, IEEE Trans. Ind. Applicat., 35, 1289 (1999).

    Article  CAS  Google Scholar 

  7. V. Demidiouk, S. I. Moon and J. O. Chae, Catal. Commun., 4, 51 (2003).

    Article  CAS  Google Scholar 

  8. H. H. Kim, K. Takashima, S. Katsura and A. Mizuno, J. phys. D: Appl. Phys., 34, 604 (2001).

    Article  CAS  Google Scholar 

  9. H. Einaga, T. Ibusuki and S. Futamura, IEEE Trans. Ind. Applicat., 37, 1476 (2001).

    Article  CAS  Google Scholar 

  10. T. Hammer, T. Kishmoto, H. Miessner and R. Rudolph, SAE Trans., 108, 2035 (1999).

    Google Scholar 

  11. D. Li, D. Yakushiji, T. Kanazawa, T. Ohkubo and Y. Nomoto, J. Electrostat., 55, 311 (2002).

    Article  CAS  Google Scholar 

  12. Y. H. Song, S. J. Kim, K. I. Choi and T. Yamamoto, J. Electrostat., 55, 189 (2002).

    Article  CAS  Google Scholar 

  13. H. H. Kim, K. Tsunoda, S. Katsura and A. Mizuno, IEEE Trans. Ind. Applicat., 35, 1306 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Goo Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, S.G., Kim, KH., Shin, D.H. et al. Effective combination of non-thermal plasma and catalyst for removal of volatile organic compounds and NOx. Korean J. Chem. Eng. 24, 522–526 (2007). https://doi.org/10.1007/s11814-007-0092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0092-9

Key words

Navigation