Skip to main content
Log in

Binary protein adsorption to DEAE sepharose FF

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Equilibrium between ion exchangers and proteins is one of the most important factors in ion exchange chromatography. A model system was used to simulate the adsorption of human serum albumin (HSA) and ovalbumin (OVA) as a binary protein system to the DEAE Sepharose FF as an anion exchanger. Two models, one based on a competition between adsorbing molecules and the other a non competitive model have been compared to experimental results. Competitive adsorption was seen in experiments in which breakthrough curves and the profiles of adsorbed proteins in packed beds were determined. However, although the results for packed bed experiments were more closely predicted by the competitive model, some discrepancies were found, suggesting that when considering multicomponent protein adsorption to ion exchangers it may also be necessary to take account of factors such as the molecular size of adsorbing proteins and any potential inter protein interaction, which may hinder the development of a general model of multicomponent protein adsorption to ion exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Jaulmes, C. Vidal-Madjar and A. Pantazaki, Chromatographia., Suppl., 53, 417 (2001).

    Article  Google Scholar 

  2. E. Boschetti, J. Chromatogr., 658, 207 (1994).

    Article  CAS  Google Scholar 

  3. J. Bonnerjea, S. Oh, M. Hoare and P. Dunnill, Bio/Technology, 4, 954 (1986).

    Article  CAS  Google Scholar 

  4. A. Velayudhan and C. Horvath, J. Chromatogr., 443, 13 (1988).

    Article  CAS  Google Scholar 

  5. J. M. Jacobson, J. H. Frenz and Cs. Horváth, Ind. Eng. Chem. Res., 26, 43 (1987).

    Article  Google Scholar 

  6. S. C. Nigam, A. Sakoda and H. Y. Wang, Biotechnology Progress, 4, 166 (1988).

    Article  CAS  Google Scholar 

  7. M. R. Aboudzadeh, Z. Jiawen and W. Bin, Korean J. Chem. Eng., 23, 124 (2006).

    Article  CAS  Google Scholar 

  8. I. S. Gosling, Ph.D. Thesis, University College, University of Wales, Swansea (1985).

    Google Scholar 

  9. Q. M. Mao and M. T. W. Hearn, Biotech. & Bioengin., 52, 204 (1996).

    Article  CAS  Google Scholar 

  10. G. Leaver, Ph.D. Thesis, University College, University of Wales, Swansea (1984).

  11. E. E. Graham, N. G. Pinto and A. Pucciani, Biotech. Prog., 3, 141 (1987).

    CAS  Google Scholar 

  12. W. D. Chen, X. Y. Dong and Y. Sun, J. Chromatogr., 926, 29 (2002).

    Article  Google Scholar 

  13. K. Kaczmarski, D. Antos, H. Sajonz, P. Sajonz and G. Guiochon, J. Chromatogr., 925, 1 (2001).

    Article  CAS  Google Scholar 

  14. G. M. Di Bussolo and J. R. Gant, J. Chromatogr., 327, 67 (1987).

    Article  Google Scholar 

  15. R. F. Steiner, Arch. Biochem. Biophys., 46, 291 (1953).

    Article  CAS  Google Scholar 

  16. R. F. Steiner, Arch. Biochem. Biophys., 47, 56 (1953).

    Article  CAS  Google Scholar 

  17. J.-C. Janson and P. Hedman, Biotechnology Progress, 3,1, 9 (1987).

    CAS  Google Scholar 

  18. G. L. Skidmore, B. J. Horstmann and H. A. Chase, J. Chromatogr., 498, 113 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Aboudzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aboudzadeh, M.R., Aboudzadeh, N., Jiawen, Z. et al. Binary protein adsorption to DEAE sepharose FF. Korean J. Chem. Eng. 24, 641–647 (2007). https://doi.org/10.1007/s11814-007-0017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-007-0017-7

Key words

Navigation