Skip to main content
Log in

Effect of Sea Level Rise and Offshore Wave Height Change on Nearshore Waves and Coastal Structures

  • Research Article
  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

In 1994, Townend proposed a method to calculate the relative changes in various wave characteristics and structure-related parameters due to sea level rise for regular waves. The method was extended to irregular waves by Cheon and Suh in 2016. In this study, this method is further extended to include the effect of future change in offshore wave height and the sea level rise. The relative changes in wavelength, refraction coefficient, shoaling coefficient, and wave height in nearshore area are presented as functions of the relative changes in water depth and offshore wave height. The calculated relative changes in wave characteristics are then used to estimate the effect of sea level rise and offshore wave height change on coastal structures by calculating the relative changes in wave run-up height, overtopping discharge, crest freeboard, and armor weight of the structures. The relative changes in wave characteristics and structure-related parameters are all expressed as a function of the relative water depth for various combinations of the relative changes in water depth and offshore wave height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A :

tanh2(2πD/L)sin2α0

C :

wave celerity (m/s)

C g :

wave group velocity (m/s)

D :

water depth (m)

g :

gravitational acceleration (m/s)

H :

wave height (m)

K D :

stability coefficient of aromr unit

K r :

refraction coefficient

K s :

nonlinear shoaling coefficient

K si :

linear shoaling coefficient

L :

wavelength (m)

m :

beach slope

N :

tanθ

Q :

wave overtopping discharge (m3/s/m)

R c :

crest freeboard of structure (m)

S :

wave steepness

s :

specific gravity of aromor unit

T :

wave period (s)

W :

weight of armor unit (N)

Z 2% :

wave run-up height exceeded by 2% of the incoming waves(m)

α :

angle of principal wave direction (°)

β max :

max{0.92, 0.32S0−0.29e2.4m}

β 0 :

0.028S0−0.38e20m1.5

β 1 :

0.52e4.2m

Γ :

0.0015Ks−1(D/L0)−2.87(H0/L0)1.27

γ b :

correction factor for a berm

γ f :

correction factor for permeability and roughness on a slope

γ s :

specific weight of armor unit (N/m3)

γ β :

correction factor for oblique wave attack

θ :

slope angle of structure (°)

ξ :

surf similarity parameter

ξ c :

critical surf similarity parameter dividing breaking and non-breaking waves; and the subscript “0” indicates a value in deep water (e.g.,

H 0 :

= deepwater wave height)

References

  • Booij N, Ris R, Holthuijsen L (1999) A third-generation wave model for coastal regions: I-Model description and validation. J Geophys Res 104(C4):7649–7666. https://doi.org/10.1029/98jc02622

    Article  Google Scholar 

  • Cheon S-H, Suh K-D (2016) Effect of sea level rise on nearshore significant waves and coastal structures. Ocean Eng 114:280–289. https://doi.org/10.1016/j.oceaneng.2016.01.026

    Article  Google Scholar 

  • Chini N, Stansby PK (2012) Extreme values of coastal wave overtopping accounting for climate change and sea level rise. Coast Eng 65:27–37. https://doi.org/10.1016/j.coastaleng.2012.02.009

    Article  Google Scholar 

  • Debernard J, Saetra O, Roed LP (2002) Future wind, wave and storm surge climate in the northern North Atlantic. Clim Res 23:39–49. https://doi.org/10.3354/cr023039

    Article  Google Scholar 

  • De Rouck J, Van der Meer JW, Allsop NWH, Franco L, Verhaeghe H, (2002) Wave overtopping at coastal structures: development of a database toward up-graded prediction model. Proceedings of 28th International Conference on Coastal Engineering, world scientific, Singapore, 2140–2152

  • Goda Y (1975) Irregular wave deformation in the surf zone. Coast Eng Jpn 18:13–25

    Article  Google Scholar 

  • Goda Y (2009) A performance test of nearshore wave height prediction with CLASH datasets. Coast Eng 56:220–229. https://doi.org/10.1016/j.coastaleng.2008.07.003

    Article  Google Scholar 

  • Goda Y (2010) Random seas and design of maritime structures, 3rd ed., World Scientific, Singapore, 48–54

  • Hemer MA, Wang XL, Church JA, Swail VR (2010) Modeling proposal: coordinating global ocean wave climate projections. Bull Am Meteorol Soc 91:451–454. https://doi.org/10.1175/2009bams2951.1

    Article  Google Scholar 

  • Hemer MA, Katzfey J, Trenham C (2013a) Global dynamical projections of surface ocean wave climate for a future high greenhouse gas emission scenario. Ocean Model 70:221–245. https://doi.org/10.1016/j.ocemod.2012.09.008

    Article  Google Scholar 

  • Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013b) Projected changes in wave climate from a multi-model ensemble. Nat Clim Chang 3:471–476. https://doi.org/10.1038/nclimate1791

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Kaskell K (1996) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge, pp 51–64

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 85–98

  • Hudson RY (1959) Laboratory investigation of rubble-mound breakwaters. J Waterw Harb Div 85(WW3):93–121

    Google Scholar 

  • Hunt JN (1979) Direct solution of wave dispersion equation. J Waterw, Port, Coast Ocean Div 105(WW4):457–459

    MathSciNet  Google Scholar 

  • Iwagaki Y, Shiota K, Doi H (1982) Shoaling and refraction coefficients of finite amplitude waves. Coast Eng Jpn 25:25–35

    Article  Google Scholar 

  • Klein RJ, Smit MJ, Goosen H, Hulsbergen CH (1998) Resilience and vulnerability: coastal dynamics or Dutch dikes? Geogr J 164(3):259–268. https://doi.org/10.2307/3060615

    Article  Google Scholar 

  • Kweon HM, Goda Y (1996) A parametric model for random wave deformation by breaking on arbitrary beach profiles. Proceedings of 25th International Conference on Coastal Engineering, American Society of Civil Engineers, Reston, Virginia, USA, 261–274

  • Lee C-E, Kim S-W, Park D-H, Suh K-D (2013) Risk assessment of wave run-up height and armor stability of inclined coastal structures subject to long-term sea level rise. Ocean Eng 71:130–136. https://doi.org/10.1016/j.oceaneng.2012.12.035

    Article  Google Scholar 

  • Lim D-U, Suh K-D, Mori N (2013) Regional projection of future extreme wave heights around Korean peninsula. Ocean Science Journal 48(4):439–453. https://doi.org/10.1007/s12601-013-0037-7

    Article  Google Scholar 

  • Marchetti C (1977) On geoengineering and the CO2 problem. Clim Chang 1(1):59–68. https://doi.org/10.1007/bf00162777

    Article  Google Scholar 

  • Marland G, Boden TA, Andres RJ, Brenkert AL, Johnston CA (2003) Global, regional, and national fossil fuel CO2 emissions, trends: a compendium of data on global change. Oak Ridge National Laboratory, Oak Ridge, Tennessee, pp 34–43

    Google Scholar 

  • Mori N, Yasuda T, Mase H, Tom T, Oku Y (2010) Projection of extreme wave climate change under global warming. Hydrol Res Lett 4:15–19. https://doi.org/10.3178/hrl.4.15

    Article  Google Scholar 

  • Mori N, Shimura T, Yasuda T, Mase H (2013) Multi-model climate projections of ocean surface variables under different climate scenarios—future change of waves, sea level and wind. Ocean Eng 71:122–129. https://doi.org/10.1016/j.oceaneng.2013.02.016

    Article  Google Scholar 

  • Okayasu A, Sakai K (2006) Effect of sea level rise on sliding distance of a caisson breakwater−optimization with probabilistic design method. Proceedings of 30th International Conference on Coastal Engineering, World Scientific, Singapore, 4883–4893

  • Pullen T, Allsop NWH, Bruce T, Kortenhaus A, Schüttrumpf H, Van der Meer JW (2007) EurOtop−Wave overtopping of sea defences and related structures: Assessment manual. Die Kuste. Heft 73. Available from http://www.overtopping-manual.com [Accessed on 15, Jan. 2018]

  • Reeve D (2010) On the impacts of climate change for port design. Proceedings of 26th International Conference for Seaports and Maritime Transport, Port Training Institute of Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt, 1–10

  • Reeve D, Soliman A, Lin P (2008) Numerical study of combined overflow and wave overtopping over a smooth impermeable seawall. Coast Eng 55:155–166. https://doi.org/10.1016/j.coastaleng.2007.09.008

    Article  Google Scholar 

  • Schneider SH, Chen RS (1980) Carbon dioxide warming and coastline flooding: physical factors and climatic impact. Annu Rev Energy 5(1):107–140. https://doi.org/10.1146/annurev.eg.05.110180.000543

    Article  Google Scholar 

  • Shimura T, Mori N, Nakajo S, Yasuda T, Mase H (2011) Extreme wave climate change projection at the end of 21st century. Proceedings of 6th International Conference on Asian and Pacific Coasts, Hong Kong, 341–348

  • Shuto N (1974) Nonlinear long waves in a channel of variable section. Coast Eng Jpn 17:1–12

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 93–128

    Google Scholar 

  • Stern NH, Britain G, Treasury H (2006) Stern review: The economics of climate change, 30. HM Treasury, London

    Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. Cambridge Univ. Press, Cambridge, pp 119–158

    Google Scholar 

  • Suh K-D, Kim S-W, Kim S, Cheon S (2013) Effects of climate change on stability of caisson breakwaters in different water depths. Ocean Eng 71:103–112. https://doi.org/10.1016/j.oceaneng.2013.02.017

    Article  Google Scholar 

  • Suh K-D, Kim S-W, Mori N, Mase H (2012) Effect of climate change on performance-based design of caisson breakwaters. J Waterw Port Coast Ocean Eng 138(3):215–225. https://doi.org/10.1061/(asce)ww.1943-5460.0000126

    Article  Google Scholar 

  • Sutherland J, Wolf J (2002) Coastal defence vulnerability 2075. HR Wallingford Limited, Wallingford, pp 1–8

    Google Scholar 

  • Takagi H, Kashihara H, Esteban M, Shibayama T (2011) Assessment of future stability of breakwaters under climate change. Coast Eng J 53(1):21–39. https://doi.org/10.1142/s0578563411002264

    Article  Google Scholar 

  • Thompson EF, Vincent CL (1985) Significant wave height for shallow water design. J Waterw, Port, Coast Ocean Eng 111(5):828–842. https://doi.org/10.1061/(asce)0733-950x(1985)111:5(828)

    Article  Google Scholar 

  • Torresan S, Critto A, Dalla Valle M, Harvey N, Marcomini A (2008) Assessing coastal vulnerability to climate change: comparing segmentation at global and regional scales. Sustain Sci 3(1):45–65. https://doi.org/10.1007/s11625-008-0045-1

    Article  Google Scholar 

  • Townend IH (1994) Variation in design conditions in response to sea-level rise. Proc Inst Civil Eng 106(3):205–213

    Google Scholar 

  • U.S. Army Coastal Engineering Research Center (1977) Shore protection manual, 3rd edn. U.S. government printing office, Washington, D.C., USA, pp 3–1–3-14

    Google Scholar 

  • Wang XL, Swail VR (2006) Climate change signal and uncertainty in projections of ocean wave heights. Clim Dyn 26:109–126. https://doi.org/10.1007/s00382-005-0080-x

    Article  Google Scholar 

  • Wigley TM (2009) The effect of changing climate on the frequency of absolute extreme events. Clim Chang 97(1–2):67–76. https://doi.org/10.1007/s10584-009-9654-7

    Article  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A2A2A01007921). The Institute of Construction and Environmental Engineering at Seoul National University provided research facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Duck Suh.

Additional information

Foundation item: National Research Foundation of Korea (NRF) funded by Korea Ministry of Science, ICT and Future Planning (NRF-2014R1A2A2A01007921)

Appendix

Appendix

Worked example for calculation of relative change in wave height

An example is presented for the calculation of the relative change in wave height in several different water depths. We assume m = 1/50 and T = 10 s so that H0 = (T/3.85)2 = 6.75 m, L0 = gT2/(2π) = 156 m, C0 = gT/(2π) = 15.6 m/s, \( {\beta}_0=0.028{S_0}^{-0.38}{e}^{20{m}^{1.5}}=0.098 \), β1 = 0.52e4.2m = 0.566, and βmax = max {0.92, 0.32S0−0.29e2.4m} = 0.92. Both the sea level rise and the offshore wave height increase are assumed to be 0.5 m so that H0 = 7.25 m, h0 = H0/H0 = 1.074, T = 3.85/H0′0.5 = 10.37 s, L0 = gT′2/(2π) = 167.76 m, and C0 = 16.18 m/s.

  1. 1.
    $$ D=2\ \mathrm{m} $$
  2. 1)

    D = 2.5 m; d = D/D = 1.25; D/L0 = 0.0128; D/L0 = 0.0149

  3. 2)

    \( \frac{H_0}{L_0}=0.0432>\frac{\beta_1}{\beta_{\mathrm{max}}-{\beta}_0}\frac{D}{L_0}=8.8\times {10}^{-3} \)

∴ Surf zone before sea level rise

  1. 3)

    \( \frac{{H_0}^{\prime }}{{L_0}^{\prime }}=0.0432>\frac{\beta_1}{\beta_{\mathrm{max}}-{\beta}_0}\frac{D^{\prime }}{{L_0}^{\prime }}=0.0102 \)

    ∴ Surf zone after sea level rise.

We can confirm from Fig. 7 that the location belongs to the surf zone (indicated by the dotted line) both before and after the sea level rise.

  1. 4)

    Using Eq. (24), h = h0 + (d − h0)[β1D/(β0H0 + β1D)] = 1.185

  2. 2.
    $$ D=10\ \mathrm{m} $$
  3. 1)

    D = 10.5 m; d = D/D = 1.05; D/L0 = 0.064; D/L0 = 0.0625

  4. 2)

    \( \frac{H_0}{L_0}=0.0432<\frac{\beta_1}{\beta_{\mathrm{max}}-{\beta}_0}\frac{D}{L_0}=0.044 \); L = 92.37 m;

\( {C}_g=\frac{1}{2}\left[1+\frac{4\uppi D/L}{\sinh \left(4\uppi D/L\right)}\right]\left(\frac{gT}{2\uppi}\tanh \frac{2\uppi D}{L}\right)=8.07\kern0.50em \mathrm{m}/\mathrm{s} \); \( {K}_{si}=\sqrt{C_0/\left(2{C}_g\right)}=0.984 \);

Ks = Ksi + 0.0015(D/L0)−2.87(H0/L0)1.27 = 1.657 > βmax = 0.92

∴ Transition zone before sea level rise

  1. 3)
    $$ \frac{{H_0}^{\prime }}{{L_0}^{\prime }}=0.0432>\frac{\beta_1}{\beta_{\mathrm{max}}-{\beta}_0}\frac{D^{\prime }}{{L_0}^{\prime }}=0.0430 $$

∴ Surf zone after sea level rise.

  1. 4)

    Using Eq. (24), h = (β0h0 + β1d(D/L0)S0−1)/βmax = 1.071.

  2. 3.
    $$ D=25\ \mathrm{m} $$
  3. 1)

    D = 25.5 m; d = D/D = 1.02; D/L0 = 0.160; D/L0 = 0.152; L = 130.38 m; L = 137.94 m; l = L/L = 1.058.

  4. 2)

    \( {C}_g=\frac{1}{2}\left[1+\frac{4\uppi D/L}{\sinh \left(4\uppi D/L\right)}\right]\left(\frac{gT}{2\uppi}\tanh \frac{2\uppi D}{L}\right)=9.37\kern0.50em \mathrm{m}/\mathrm{s}; \)\( {K}_{si}=\sqrt{C_0/\left(2{C}_g\right)}=0.913 \);Ks = Ksi + 0.0015(D/L0)−2.87(H0/L0)1.27 = 0.918 < βmax = 0.92 ∴ shoaling zone before sea level rise.

  5. 3)

    Cg = 9.71 m/s; Ksi = 0.913; Ks = 0.919 < βmax = 0.92.

∴ Shoaling zone after sea level rise.

  1. 4)

    \( {k}_{si}={\left(\frac{h_0}{l}\frac{1+\frac{4\uppi D/L}{\sinh \left(4\uppi D/L\right)}}{1+\frac{4\uppi D/(lL)}{\sinh \left(4\uppi D/(lL)\right)}}\right)}^{1/2}=1 \); Γ = 0.0015Ks−1(D/L0)−2.87(H0/L0)1.27 = 0.0058

  2. 5)
    $$ {k}_s={k}_{si}+\Gamma \left[{d}^{-2.87}{h_0}^{2.87}-{k}_{si}\right]=1 $$
  3. 6)

    Using Eq. (24), h = h0ks = 1.074.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, IC., Suh, KD. Effect of Sea Level Rise and Offshore Wave Height Change on Nearshore Waves and Coastal Structures. J. Marine. Sci. Appl. 17, 192–207 (2018). https://doi.org/10.1007/s11804-018-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-018-0022-8

Keywords

Navigation