Skip to main content
Log in

Single Photon Detection Technology in Underwater Wireless Optical Communication: Modulation Modes and Error Correction Coding Analysis

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

This study explores the application of single photon detection (SPD) technology in underwater wireless optical communication (UWOC) and analyzes the influence of different modulation modes and error correction coding types on communication performance. The study investigates the impact of on-off keying (OOK) and 2-pulse-position modulation (2-PPM) on the bit error rate (BER) in single-channel intensity and polarization multiplexing. Furthermore, it compares the error correction performance of low-density parity check (LDPC) and Reed-Solomon (RS) codes across different error correction coding types. The effects of unscattered photon ratio and depolarization ratio on BER are also verified. Finally, a UWOC system based on SPD is constructed, achieving 14.58 Mbps with polarization OOK multiplexing modulation and 4.37 Mbps with polarization 2-PPM multiplexing modulation using LDPC code error correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benedetto, S., and Poggiolini, P., 1992. Theory of polarization shift keying modulation. IEEE Transactions on Communications, 40 (4): 708–721.

    Article  Google Scholar 

  • Chen, H., Chen, X., Lu, J., Liu, X., Shi, J., Zheng, L., et al., 2020. Toward long-distance underwater wireless optical communication based on a high-sensitivity single photon avalanche diode. IEEE Photonics Journal, 12 (3): 7902510.

    Article  Google Scholar 

  • Cox, W. C., Simpson, J. A., Domizioli, C. P., Muth, J. F., and Hughes, B. L., 2008. An underwater optical communication system implementing Reed-Solomon channel coding. OCEANS 2008. Quebec City, QC, Canada, 1–6.

  • Dai, Y., Chen, X., Yang, X. Z., Du, Z., Lyu, W., Zhang, C., et al., 2021. 200-m/500-Mbps underwater wireless optical communication system utilizing a sparse nonlinear equalizer with a variable step size generalized orthogonal matching pursuit. Optics Express, 29 (20): 32228–32243.

    Article  Google Scholar 

  • Dong, Y., Zhang, T., and Zhang, X., 2013. Polarized pulse position modulation for wireless optical communications. 2013 47th Annual Conference on Information Sciences and Systems (CISS). Baltimore, MD, USA, 1–5.

  • Duntley, S. Q., 1963. Light in the sea. Journal of the Optical Society of America, 53 (2): 214–233.

    Article  Google Scholar 

  • Fei, C., Hong, X. J., Zhang, G. W., Du, J., Gong, Y., Evans, J., et al., 2018. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization. Optics Express, 26 (26): 34060–34069.

    Article  CAS  Google Scholar 

  • Hiskett, P. A., and Lamb, R. A., 2014. Underwater optical communications with a single photon-counting system. Proceeding Volume 9114, Advanced Photon Counting Techniques VIII. Baltimore, MD, USA, 91140P.

  • Hu, S., Mi, L., Zhou, T., and Chen, W., 2018. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM. Optics Express, 26 (17): 21685–21699.

    Article  CAS  Google Scholar 

  • Johnson, L. J., Green, R. J., and Leeson, M. S., 2013. Underwater optical wireless communications: Depth dependent variations in attenuation. Applied Optics, 52 (33): 7867–7873.

    Article  Google Scholar 

  • Kaushal, H., and Kaddoum, G., 2016. Underwater optical wireless communication. IEEE Access, 4 (1): 1518–1547.

    Article  Google Scholar 

  • Khalighi, M. A., and Uysal, M., 2014. Survey on free space optical communication: A communication theory perspective. Communications Surveys & Tutorials IEEE, 16 (4): 2231–2258.

    Article  Google Scholar 

  • Li, C. Y., Lu, H. H., Tsai, W. S., Wang, Z. H., Hung, C. W., Su, C. W., et al., 2018. A 5 m/25 Gbps underwater wireless optical communication system. IEEE Photonics Journal, 10 (3): 7904909.

    Article  Google Scholar 

  • Li, J. H., Wang, F. M., Zhao, M. M., Jiang, F. Y., and Chi, N., 2019. Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array reception. Applied Optics, 58 (2): 383–388.

    Article  Google Scholar 

  • Li, X., Tong, Z., Lyu, W., Chen, X., Yang, X., Zhang, Y., et al., 2022. Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Optics Express, 30 (2): 1709–1722.

    Article  CAS  Google Scholar 

  • Liu, W. H., Zou, D. F., Xu, Z. Y., and Yu, J. C., 2015. Nonline-of-sight scattering channel modeling for underwater optical wireless communication. 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang, China, 1265–1268.

  • Liu, X. Y., Yi, S. Y., Zhou, X. L., Fang, Z. L., Qiu, Z. J., Hu, L. G., et al., 2017. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation. Optics Express, 25 (22): 27937–27947.

    Article  CAS  Google Scholar 

  • Lu, C. H., Wang, J. M., Li, S. B., and Xu, Z. Y., 2019. 60 m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization. Conference on Lasers and Electro-Optics (CLEO). San Jose, CA, USA, 1–2.

  • Lv, Z., He, G., Qiu, C., Fan, Y., Wang, H., and Liu, Z., 2022. CMOS monolithic photodetector with a built-in 2-dimensional light direction sensor for laser diode based underwater wireless optical communications. Optics Express, 29 (11): 16197–16204.

    Article  Google Scholar 

  • Mi, X., and Dong, Y., 2016. Polarized digital pulse interval modulation for underwater wireless optical communications. OCEANS 2016. Shanghai, China, 1–4.

  • Niblack, W., and Wolf, E., 1964. Polarization modulation and demodulation of light. Applied Optics, 3 (2): 277–280.

    Article  Google Scholar 

  • Ramavath, P. N., Udupi, S. A., and Krishnan, P., 2020. High-speed and reliable underwater wireless optical communication system using multiple-input multiple-output and channel coding techniques for IoUT applications. Optics Communications, 461: 1–8.

    Article  Google Scholar 

  • Tsai, W. S., Lu, H. H., Wu, H. W., Tu, S. C., Huang, Y. C., Xie, J. Y., et al., 2020. 500 Gb/s PAM4 FSO-UWOC convergent system with a R/G/B five-wavelength polarization-multiplexing scheme. IEEE Access, 8: 16913–16921.

    Article  Google Scholar 

  • Wang, F. M., Liu, Y. F., Jiang, F. Y., and Chi, N., 2018. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception. Optics Communications, 425: 106–112.

    Article  CAS  Google Scholar 

  • Wang, J. M., Lu, C. H., Li, S. B., and Xu, Z. Y., 2019. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode. Optics Express, 27 (9): 12171–12181.

    Article  CAS  Google Scholar 

  • Wang, J., Yang, J. Y., Fazal, I. M., Ahmed, N., Yan, Y., Huang, H., et al., 2012. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 6: 488–496.

    Article  CAS  Google Scholar 

  • Winzer, P. J., Neilson, D. T., and Chraplyvy, A. R., 2018. Fiberoptic transmission and networking: The previous 20 and the next 20 years. Optics Express, 26 (18): 24190–24239.

    Article  CAS  Google Scholar 

  • Zhu, S., Chen, X., Liu, X., Zhang, G., and Tian, P., 2020. Recent progress in and perspectives of underwater wireless optical communication. Progress in Quantum Electronics, 73: 1–28.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Nos. 62071441 and 61701464), and in part by the Fundamental Research Funds for the Central Universities (No. 202151006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, L., Li, W. & Wang, G. Single Photon Detection Technology in Underwater Wireless Optical Communication: Modulation Modes and Error Correction Coding Analysis. J. Ocean Univ. China 23, 405–414 (2024). https://doi.org/10.1007/s11802-024-5547-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-024-5547-7

Key words

Navigation