Skip to main content
Log in

Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Orbital angular momentums (OAMs) greatly enhance the channel capacity in free-space optical communication. However, demodulation of superposed OAM to recognize them separately is always difficult, especially upon multiplexing more OAMs. In this work, we report a directly recognition of multiplexed fractional OAM modes, without separating them, at a resolution of 0.1 with high accuracy, using a multi-task deep learning (MTDL) model, which has not been reported before. Namely, two-mode, four-mode, and eight-mode superposed OAM beams, experimentally generated with a hologram carrying both phase and amplitude information, are well recognized by the suitable MTDL model. Two applications in information transmission are presented: the first is for 256-ary OAM shift keying via multiplexed fractional OAMs; the second is for OAM division multiplexed information transmission in an eightfold speed. The encouraging results will expand the capacity in future free-space optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, Optical communications using orbital angular momentum beams, Adv. Opt. Photonics 7(1), 66 (2015)

    Article  ADS  Google Scholar 

  2. H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, Roadmap on structured light, J. Opt. 19(1), 013001 (2017)

    Article  ADS  Google Scholar 

  3. L. Allen, M. Beijersbergen, R. Spreeuw, and J. Woerdman, Orbital angular momentum of light and transformation of Laguerre–Gaussian laser modes, Phys. Rev. A 45(11), 8185 (1992)

    Article  ADS  Google Scholar 

  4. J. P. Yin, W. J. Gao, and Y. F. Zhu, Generation of dark hollow beams and their applications, Prog. Opt. 45(11), 119 (2003)

    Article  ADS  Google Scholar 

  5. M. J. Padgett, Orbital angular momentum 25 years on, Opt. Express 25(10), 11265 (2017) (Invited)

    Article  ADS  Google Scholar 

  6. Y. J. Shen, X. J. Wang, Z. W. Xie, C. J. Min, X. Fu, Q. Liu, M. L. Gong, and X. C. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities, Light Sci. Appl. 8(1), 90 (2019)

    Article  ADS  Google Scholar 

  7. A. Forbes, S. Ramachandran, and Q. W. Zhan, Photonic angular momentum: Progress and perspectives, Nanophotonics 11(4), 625 (2022)

    Article  Google Scholar 

  8. S. J. Li, Z. Y. Li, G. S. Huang, X. B. Liu, R. Q. Li, and X. Y. Cao, Digital coding transmissive metasurface for multi-OAM-beam, Front. Phys. 17(6), 62501 (2022)

    Article  ADS  Google Scholar 

  9. L. Jin, Y. W. Huang, Z. W. Jin, R. C. Devlin, Z. G. Dong, S. T. Mei, M. H. Jiang, W. T. Chen, Z. Wei, H. Liu, J. H. Teng, A. Danner, X. P. Li, S. M. Xiao, S. Zhang, C. Y. Yu, J. K. W. Yang, F. Capasso, and C. W. Qiu, Dielectric multi-momentum meta-transformer in the visible, Nat. Commun. 10(1), 4789 (2019)

    Article  ADS  Google Scholar 

  10. X. Y. Fang, H. J. Wang, H. C. Yang, Z. L. Ye, Y. M. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, Multichannel nonlinear holography in a two-dimensional nonlinear photonic crystal, Phys. Rev. A 102(4), 043506 (2020)

    Article  ADS  Google Scholar 

  11. J. J. Guo, Y. P. Zhang, H. Ye, L. Y. Wang, P. C. Chen, D. J. Mao, C. Z. Xie, Z. H. Chen, X. W. Wu, M. Xiao, and Y. Zhang, Spatially structured-mode multiplexing holography for high-capacity security encryption, ACS Photonics 10(3), 757 (2023)

    Article  Google Scholar 

  12. A. E. Willner, Z. Zhao, C. Liu, R. Zhang, H. Song, K. Pang, K. Manukyan, H. Song, X. Su, G. Xie, Y. Ren, Y. Yan, M. Tur, A. F. Molisch, R. W. Boyd, H. Zhou, N. Hu, A. Minoofar, and H. Huang, Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams, APL Photonics 6(3), 030901 (2021)

    Article  ADS  Google Scholar 

  13. J. Lin, X. C. Yuan, S. H. Tao, and R. E. Burge, Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states, Appl. Opt. 46(21), 4680 (2007)

    Article  ADS  Google Scholar 

  14. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Terabit free-space data transmission employing orbital angular momentum multiplexing, Nat. Photonics 6(7), 488 (2012)

    Article  ADS  Google Scholar 

  15. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers, Science 340(6140), 1545 (2013)

    Article  ADS  Google Scholar 

  16. G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, Free-space quantum key distribution by rotation-invariant twisted photons, Phys. Rev. Lett. 113(6), 060503 (2014)

    Article  ADS  Google Scholar 

  17. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. J. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wave-length, Opt. Lett. 39(2), 197 (2014)

    Article  ADS  Google Scholar 

  18. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, Communication with spatially modulated light through turbulent air across Vienna, New J. Phys. 16(11), 113028 (2014)

    Article  Google Scholar 

  19. A. J. Willner, Y. Ren, G. Xie, Z. Zhao, Y. Cao, L. Li, N. Ahmed, Z. Wang, Y. Yan, P. Liao, C. Liu, M. Mirhosseini, R. W. Boyd, M. Tur, and A. E. Willner, Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes, Opt. Lett. 40(24), 5810 (2015)

    Article  ADS  Google Scholar 

  20. M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M. Malik, and A. Zeilinger, Twisted light transmission over 143 km, Proc. Natl. Acad. Sci. USA 113(48), 13648 (2016)

    Article  ADS  Google Scholar 

  21. H. Zhang, J. Zeng, X. Y. Lu, Z. Y. Wang, C. L. Zhao, and Y. J. Cai, Review on fractional vortex beam, Nanophotonics 11(2), 241 (2022)

    Article  ADS  Google Scholar 

  22. Z. W. Liu, S. Yan, H. G. Liu, and X. F. Chen, Super-high-resolution recognition of optical vortex modes assisted by a deep-learning method, Phys. Rev. Lett. 123(18), 183902 (2019)

    Article  ADS  Google Scholar 

  23. Y. Na and D. K. Ko, Adaptive demodulation by deep-learning-based identification of fractional orbital angular momentum modes with structural distortion due to atmospheric turbulence, Sci. Rep. 11(1), 23505 (2021)

    Article  ADS  Google Scholar 

  24. J. Leach, M. Padgett, S. Barnett, S. Franke-Arnold, and J. Courtial, Measuring the orbital angular momentum of a single photon, Phys. Rev. Lett. 88(25), 257901 (2002)

    Article  ADS  Google Scholar 

  25. G. Berkhout, M. Lavery, J. Courtial, M. Beijersbergen, and M. Padgett, Efficient sorting of orbital angular momentum states of light, Phys. Rev. Lett. 105(15), 153601 (2010)

    Article  ADS  Google Scholar 

  26. M. Mirhosseini, M. Malik, Z. Shi, and R. Boyd, Efficient separation of the orbital angular momentum eigenstates of light, Nat. Commun. 4(1), 2781 (2013)

    Article  ADS  Google Scholar 

  27. Y. H. Wen, I. Chremmos, Y. J. Chen, J. B. Zhu, Y. F. Zhang, and S. Y. Yu, Spiral transformation for high-resolution and efficient sorting of optical vortex modes, Phys. Rev. Lett. 120(19), 193904 (2018)

    Article  ADS  Google Scholar 

  28. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, Freespace information transfer using light beams carrying orbital angular momentum, Opt. Express 12(22), 5448 (2004)

    Article  ADS  Google Scholar 

  29. T. Doster and A. T. Watnik, Machine learning approach to OAM beam demultiplexing via convolutional neural networks, Appl. Opt. 56(12), 3386 (2017)

    Article  ADS  Google Scholar 

  30. S. Lohani, E. M. Knutson, M. O’Donnell, S. D. Huver, and R. T. Glasser, On the use of deep neural networks in optical communications, Appl. Opt. 57(15), 4180 (2018)

    Article  ADS  Google Scholar 

  31. S. Park, L. Cattell, J. Nichols, A. Watnik, T. Doster, and G. Rohde, De-multiplexing vortex modes in optical communications using transport-based pattern recognition, Opt. Express 26(4), 4004 (2018)

    Article  ADS  Google Scholar 

  32. J. Li, M. Zhang, and D. S. Wang, Adaptive demodulator using machine learning for orbital angular momentum shift keying, IEEE Photonics Technol. Lett. 29(17), 1455 (2017)

    Article  ADS  Google Scholar 

  33. Q. S. Zhao, S. Q. Hao, Y. Wang, L. Wang, X. F. Wan, and C. L. Xu, Mode detection of misaligned orbital angular momentum beams based on convolutional neural network, Appl. Opt. 57(35), 10152 (2018)

    Article  ADS  Google Scholar 

  34. S. Lohani and R. T. Glasser, Turbulence correction with artificial neural networks, Opt. Lett. 43(11), 2611 (2018)

    Article  ADS  Google Scholar 

  35. Q. H. Tian, Z. Li, K. Hu, L. Zhu, X. L. Pan, Q. Zhang, Y. J. Wang, F. Tian, X. L. Yin, and X. J. Xin, Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator, Opt. Express 26(21), 27849 (2018)

    Article  ADS  Google Scholar 

  36. J. Li, M. Zhang, D. S. Wang, S. J. Wu, and Y. Y. Zhan, Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM–FSO communication, Opt. Express 26(8), 10494 (2018)

    Article  ADS  Google Scholar 

  37. Y. Z. Shi, Z. H. Ma, H. Y. Chen, Y. G. Ke, Y. Chen, and X. X. Zhou, High-resolution recognition of FOAM modes via an improved EfficientNet V2 based convolutional neural network, Front. Phys. 19(3), 32205 (2024)

    Article  ADS  Google Scholar 

  38. H. Luan, D. Lin, K. Li, W. Meng, M. Gu, and X. Fang, 768-ary Laguerre–Gaussian-mode shift keying free-space optical communication based on convolutional neural networks, Opt. Express 29(13), 19807 (2021)

    Article  ADS  Google Scholar 

  39. A. Maurer, M. Pontil, and B. Paredes, The benefit of multitask representation learning, J. Mach. Learn. Res. 17(1), 2853 (2016)

    MathSciNet  Google Scholar 

  40. Z. X. Mao, H. Y. Yu, M. Xia, S. Z. Pan, D. Wu, Y. L. Yin, Y. Xia, and J. P. Yin, Broad bandwidth and highly efficient recognition of optical vortex modes achieved by the neural-network approach, Phys. Rev. Appl. 13(3), 034063 (2020)

    Article  ADS  Google Scholar 

  41. J. Davis, D. Cottrell, J. Campos, M. Yzuel, and I. Moreno, Encoding amplitude information onto phase-only filters, Appl. Opt. 38(23), 5004 (1999)

    Article  ADS  Google Scholar 

  42. E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W. Boyd, Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram, Opt. Lett. 38(18), 3546 (2013)

    Article  ADS  Google Scholar 

  43. K. Thung and C. Wee, A brief review on multi-task learning, Multimedia Tools Appl. 77(22), 29705 (2018)

    Article  Google Scholar 

  44. Y. Zhang and Q. Yang, An overview of multi-task learning, Natl. Sci. Rev. 5(1), 30 (2018)

    Article  ADS  Google Scholar 

  45. C. Szegedy, L. Wei, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 1 (2015)

  46. S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He, Aggregated residual transformations for deep neural networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 5987 (2017)

  47. R. Collobert, and J. Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, in: Proceedings of the 25th International Conference on Machine Learning, Association for Computing Machinery: Helsinki, Finland, 160–167 (2008)

    Chapter  Google Scholar 

  48. X. Cui, W. Zhang, U. Finkler, G. Saon, M. Picheny, and D. Kung, Distributed training of deep neural network acoustic models for automatic speech recognition: A comparison of current training strategies, IEEE Signal Process. Mag. 37(3), 39 (2020)

    Article  Google Scholar 

  49. R. B. Girshick and R. C. N. N. Fast, IEEE International Conference on Computer Vision (ICCV), 1440 (2015)

  50. B. L. Li, H. T. Luan, K. Y. Li, Q. Y. Chen, W. J. Meng, K. Cheng, M. Gu, and X. Y. Fang, Orbital angular momentum optical communications enhanced by artificial intelligence, J. Opt. 24(9), 094003 (2022)

    Article  ADS  Google Scholar 

  51. Z. S. Wan, H. Wang, Q. Liu, X. Fu, and Y. J. Shen, Ultra-degree-of-freedom structured light for ultracapacity information carriers, ACS Photonics 10(7), 2149 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports are from the National Natural Science Foundation of China (Grant Nos. 12174115, 91836103, and 11834003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaling Yin or Yong Xia.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yin, Y., Tang, J. et al. Information transmission through parallel multi-task-based recognition of high-resolution multiplexed orbital angular momentum. Front. Phys. 19, 52202 (2024). https://doi.org/10.1007/s11467-024-1402-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-024-1402-y

Keywords

Navigation