Skip to main content
Log in

Saturation Estimation with Complex Electrical Conductivity for Hydrate-Bearing Clayey Sediments: An Experimental Study

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Clays have considerable influence on the electrical properties of hydrate-bearing sediments. It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation (Sh) models for reservoir evaluation and monitoring. The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz. The effects of clay and Sh on the complex conductivity were analyzed. A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer (EDL), respectively. The quadrature conductivity increases with the clay content up to 10% because of the increased surface site density of counterions in EDL. Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90. Three sets of models for Sh evaluation were developed. The model based on the Simandoux equation outperforms Archie’s formula, with a root-mean-square error (ERMS) of 1.8% and 3.9%, respectively, highlighting the clay effects on the in-phase conductivity. The frequency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance (ERMS = 11.6% and 13.2%, respectively) due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements. The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra. One pair of inverted Cole-Cole parameters, i.e., characteristic time and chargeability, is employed to predict Sh with an ERMS of 5.05% and 9.05%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archie, G. E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(1): 54–62.

    Article  Google Scholar 

  • Binley, A., Slater, L. D., Fukes, M., and Cassiani, G., 2005. Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resources Research, 41(12): 2179–2187.

    Article  Google Scholar 

  • Börner, F. D., and Schön, J. H., 1991. A relation between the quadrature component of electrical conductivity and the specific surface area of sedimentary rocks. Log Analyst, 32(5): 612–613.

    Google Scholar 

  • Boswell, R., 2009. Is gas hydrate energy within reach? Science, 325(5943): 957–958.

    Article  Google Scholar 

  • Boswell, R., and Collett, T. S., 2011. Current perspectives on gas hydrate resources. Energy & Environmental Science, 4(4): 1206–1215.

    Article  Google Scholar 

  • Boswell, R., Hancock, S., Yamamoto, K., Collett, T., Pratap, M., and Lee, S. R., 2020. Natural gas hydrates: Status of potential as an energy resource. In: Future Energy. Elsevier, Netherlands, 111–131.

    Chapter  Google Scholar 

  • Bu, Q., Hu, G., Liu, C., Dong, J., Xing, T., Sun, J., et al., 2021. Effect of methane gas on acoustic characteristics of hydrate-bearing sediment-model analysis and experimental verification. Journal of Ocean University of China, 20(1): 75–86.

    Article  Google Scholar 

  • Cai, J., Wei, W., Hu, X., and Wood, D. A., 2017. Electrical conductivity models in saturated porous media: A review. Earth Science Reviews, 171: 419–433.

    Article  Google Scholar 

  • Chen, X., and Espinoza, D. N., 2018. Ostwald ripening changes the pore habit and spatial variability of clathrate hydrate. Fuel, 214: 614–622.

    Article  Google Scholar 

  • Chibura, P. E., Zhang, W., Luo, A., and Wang, J., 2022. A review on gas hydrate production feasibility for permafrost and marine hydrates. Journal of Natural Gas Science and Engineering, 100: 104441.

    Article  Google Scholar 

  • Clennell, M. B., Hovland, M., Booth, J. S., Henry, P., and Winters, W. J., 1999. Formation of natural gas hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. Journal of Geophysical Research: Solid Earth, 104(B10): 22985–23003.

    Article  Google Scholar 

  • Cole, K. S., and Cole, R. H., 1941. Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9(4): 341–351.

    Article  Google Scholar 

  • Collett, T. S., 2002. Energy resource potential of natural gas hydrates. AAPG Bulletin, 86(11): 1971–1992.

    Google Scholar 

  • Cook, A. E., and Waite, W. F., 2018. Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs. Journal of Geophysical Research: Solid Earth, 123(3): 2069–2089.

    Article  Google Scholar 

  • Cortes, D. D., Martin, A. I., Yun, T. S., Francisca, F. M., Santamarina, J. C., and Ruppel, C., 2009. Thermal conductivity of hydrate-bearing sediments. Journal of Geophysical Research: Solid Earth, 114: B11103.

    Article  Google Scholar 

  • Dai, S., Lee, C., and Santamarina, J. C., 2011. Formation history and physical properties of sediments from the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope. Marine and Petroleum Geology, 28(2): 427–438.

    Article  Google Scholar 

  • de Lima, O. A., and Sharma, M. M., 1990. A grain conductivity approach to shaly sandstones. Geophysics, 55(10): 1347–1356.

    Article  Google Scholar 

  • du Frane, W. L., Stern, L. A., Constable, S., Weitemeyer, K. A., Smith, M. M., and Roberts, J. J., 2015. Electrical properties of methane hydrate+sediment mixtures. Journal of Geophysical Research: Solid Earth, 120: 4773–4783.

    Article  Google Scholar 

  • du Frane, W. L., Stern, L. A., Weitemeyer, K. A., Constable, S., Pinkston, J. C., and Roberts, J. J., 2011. Electrical properties of polycrystalline methane hydrate. Geophysical Research Letters, 38(9): 1–5.

    Article  Google Scholar 

  • Dugarov, G. A., Duchkov, A. A., Duchkov, A. D., and Drobchik, A. N., 2019. Laboratory validation of effective acoustic velocity models for samples bearing hydrates of different type. Journal of Natural Gas Science and Engineering, 63: 38–46.

    Article  Google Scholar 

  • Freedman, R., and Vogiatzis, J. P., 1986. Theory of induced-polarization logging in a borehole. Geophysics, 51(9): 1830–1849.

    Article  Google Scholar 

  • Guo, K., Fan, S., Wang, Y., Lang, X., Zhang, W., and Li, Y., 2020. Physical and chemical characteristics analysis of hydrate samples from northern South China Sea. Journal of Natural Gas Science and Engineering, 81: 103476.

    Article  Google Scholar 

  • Hassan, M. S., Villieras, F., Gaboriaud, F., and Razafitianamaharavo, A., 2006. AFM and low-pressure argon adsorption analysis of geometrical properties of phyllosilicates. Journal of Colloid and Interface Science, 296(2): 614–623.

    Article  Google Scholar 

  • Hu, X., Zou, C., Lu, Z., Yu, C., Peng, C., Li, W., et al., 2019. Evaluation of gas hydrate saturation by effective medium theory in shaly sands: A case study from the Qilian Mountain permafrost, China. Journal of Geophysics and Engineering, 16(1): 215–228.

    Article  Google Scholar 

  • Huang, L., Xu, C., Xu, J., Zhang, X., and Xia, F., 2021. The depressurization of natural gas hydrate in the multi-physics coupling simulation based on a new developed constitutive model. Journal of Natural Gas Science and Engineering, 95: 103963.

    Article  Google Scholar 

  • Jang, J., and Santamarina, J. C., 2016. Hydrate bearing clayey sediments: Formation and gas production concepts. Marine and Petroleum Geology, 77: 235–246.

    Article  Google Scholar 

  • Jiang, M., Ke, S., and Kang, Z., 2018. Measurements of complex resistivity spectrum for formation evaluation. Measurement, 124: 359–366.

    Article  Google Scholar 

  • Jung, J., Ryou, J. E., Al-Raoush, R. I., Alshibli, K., and Lee, J. Y., 2020. Effects of CH4-CO2 replacement in hydrate-bearing sediments on S-wave velocity and electrical resistivity. Journal of Natural Gas Science and Engineering, 82: 103506.

    Article  Google Scholar 

  • Kemna, A., 2000. Tomographic inversion of complex resistivity: Theory and application. Proceedings of SPIE — The International Society for Optical Engineering, 490(6): 59–67.

    Google Scholar 

  • Klein, J. D., and Sill, W. R., 1982. Electrical properties of artificial clay-bearing sandstone. Geophysics, 47(11): 1593–1605.

    Article  Google Scholar 

  • Knight, R. J., and Nur, A., 1987. The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophysics, 52(5): 644–654.

    Article  Google Scholar 

  • Koh, C. A., Sum, A. K. E., and Sloan, E. D., 2012. State of the art: Natural gas hydrates as a natural resource. Journal of Natural Gas Science and Engineering, 8: 132–138.

    Article  Google Scholar 

  • Kvenvolden, K. A., 1993. Gas hydrates—Geological perspective and global change. Reviews of Geophysics, 31(2): 173–187.

    Article  Google Scholar 

  • Lee, J. Y., Francisca, F. M., Santamarina, J. C., and Ruppel, C., 2010a. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties. Journal of Geophysical Research: Solid Earth, 115: B11105.

    Google Scholar 

  • Lee, J. Y., Santamarina, J. C., and Ruppel, C., 2010b. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties. Journal of Geophysical Research: Solid Earth, 115: B11104.

    Google Scholar 

  • Lee, J. Y., Yun, T. S., Santamarina, J. C., and Ruppel, C., 2007. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochemistry, Geophysics, Geosystems, 8(6): Q06003.

    Article  Google Scholar 

  • Lee, M. W., and Collett, T. S., 2008. Integrated analysis of well logs and seismic data to estimate gas hydrate concentrations at Keathley Canyon, Gulf of Mexico. Marine and Petroleum Geology, 25(9): 924–931.

    Article  Google Scholar 

  • Lee, M. W., Hutchinson, D. R., Collett, T. S., and Dillon, W. P., 1996. Seismic velocities for hydrate-bearing sediments using weighted equation. Journal of Geophysical Research: Solid Earth, 101(B9): 20347–20358.

    Article  Google Scholar 

  • Lei, L., Liu, Z., Seol, Y., Boswell, R., and Dai, S., 2019a. An investigation of hydrate formation in unsaturated sediments using X-Ray computed tomography. Journal of Geophysical Research: Solid Earth, 124(4): 3335–3349.

    Article  Google Scholar 

  • Lei, L., Seol, Y., Choi, J. H., and Kneafsey, T. J., 2019b. Pore habit of methane hydrate and its evolution in sediment matrix—Laboratory visualization with phase-contrast micro-CT. Marine and Petroleum Geology, 104: 451–467.

    Article  Google Scholar 

  • Leroy, P., and Revil, A., 2009. A mechanistic model for the spectral induced polarization of clay materials. Journal of Geophysical Research: Solid Earth, 114: B10202.

    Article  Google Scholar 

  • Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A., 2008. Complex conductivity of water-saturated packs of glass beads. Journal of Colloid and Interface Science, 321(1): 103–117.

    Article  Google Scholar 

  • Li, J., Ke, S., Yin, C., Kang, Z., Jia, J., and Ma, X., 2019. A laboratory study of complex resistivity spectra for predictions of reservoir properties in clear sands and shaly sands. Journal of Petroleum Science and Engineering, 177: 983–994.

    Article  Google Scholar 

  • Liu, C., Meng, Q., He, X., Li, C., Ye, Y., Zhang, G., et al., 2015. Characterization of natural gas hydrate recovered from Pearl River Mouth Basin in South China Sea. Marine and Petroleum Geology, 61: 14–21.

    Article  Google Scholar 

  • Liu, C., Meng, Q., Hu, G., Li, C., Sun, J., He, X., et al., 2017. Characterization of hydrate-bearing sediments recovered from the Shenhu area of the South China Sea. Interpretation, 5(3): 13–23.

    Article  Google Scholar 

  • Liu, C., Ye, Y., Meng, Q., He, X., Lu, H., Zhang, J., et al., 2012. The characteristics of gas hydrates recovered from Shenhu area in the South China Sea. Marine Geology, 307–310: 22–27.

    Article  Google Scholar 

  • Liu, J. W., and Li, X. S., 2021. Recent advances on natural gas hydrate exploration and development in the South China Sea. Energy & Fuels, 35(9): 7528–7552.

    Article  Google Scholar 

  • Liu, Z., Kim, J., Lei, L., Ning, F., and Dai, S., 2019. Tetrahydrofuran hydrate in clayey sediments—Laboratory formation, morphology, and wave characterization. Journal of Geophysical Research: Solid Earth, 124(4): 3307–3319.

    Article  Google Scholar 

  • Ma, X., Jiang, D., Lu, J., Fang, X., Yang, P., and Xia, D., 2022. Hydrate formation and dissociation characteristics in clayey silt sediment. Journal of Natural Gas Science and Engineering, 100: 104475.

    Article  Google Scholar 

  • Ma, X., Sun, Y., Guo, W., Jia, R., and Li, B., 2020. Effects of irreducible fluid saturation and gas entry pressure on gas production from hydrate-bearing clayey silt sediments by depressurization. Geofluids, 2020: 9382058.

    Article  Google Scholar 

  • Milkov, A. V., 2004. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Science Reviews, 66(3–4): 183–197.

    Article  Google Scholar 

  • Moridis, G. J., Collett, T. S., Boswell, R., Kurihara, M., Reagan, M. T., Koh, C. A., et al., 2009. Toward production from gas hydrates: Current status, assessment of resources, and simulation-based evaluation of technology and potential. SPE Reservoir Evaluation & Engineering, 12(5): 745–771.

    Article  Google Scholar 

  • Moridis, G. J., Collett, T. S., Pooladi-Darvish, M., Hancock, S., Santamarina, C., Boswell, R., et al., 2011. Challenges, uncertainties and issues facing gas production from gas hydrate deposits. SPE Reservoir Evaluation & Engineering, 14(1): 76–112.

    Article  Google Scholar 

  • Okay, G., Leroy, P., Ghorbani, A., Cosenza, P., Camerlynck, C., Cabrera, J., et al., 2014. Spectral induced polarization of clay-sand mixtures: Experiments and modeling. Geophysics, 79(6): E353–E375.

    Article  Google Scholar 

  • Osterman, G., Keating, K., Binley, A., and Slater, L., 2016. A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction. Water Resources Research, 52(6): 4321–4337.

    Article  Google Scholar 

  • Osterman, G., Sugand, M., Keating, K., Binley, A., and Slater, L., 2019. Effect of clay content and distribution on hydraulic and geophysical properties of synthetic sand-clay mixtures. Geophysics, 84(4): E239–E253.

    Article  Google Scholar 

  • Pearson, C., Murphy, J., and Hermes, R., 1986. Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: Laboratory analogues to natural gas hydrate deposits. Journal of Geophysical Research: Solid Earth, 91(B14): 14132–14138.

    Article  Google Scholar 

  • Permyakov, M. E., Manchenko, N. A., Duchkov, A. D., Manakov, A. Y., Drobchik, A. N., and Manshtein, A. K., 2017. Laboratory modeling and measurement of the electrical resistivity of hydrate-bearing sand samples. Russian Geology and Geophysics, 58(5): 642–649.

    Article  Google Scholar 

  • Ren, J., Liu, X., Niu, M., and Yin, Z., 2022. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate-implication for energy recovery. Chemical Engineering Journal, 437: 135368.

    Article  Google Scholar 

  • Revil, A., 2013. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz— 1 GHz. Water Resources Research, 49(1): 306–327.

    Article  Google Scholar 

  • Revil, A., Binley, A., Mejus, L., and Kessouri, P., 2015. Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra. Water Resources Research, 51(8): 6672–6700.

    Article  Google Scholar 

  • Revil, A., Coperey, A., Deng, Y., Cerepi, A., and Seleznev, N., 2017a. Complex conductivity of tight sandstones. Geophysics, 83(2): 55–74.

    Article  Google Scholar 

  • Revil, A., Coperey, A., Shao, Z., Florsch, N., Fabricius, I. L., Deng, Y., et al., 2017b. Complex conductivity of soils. Water Resources Research, 53(8): 7121–7147.

    Article  Google Scholar 

  • Revil, A., Eppehimer, J. D., Skold, M., Karaoulis, M., Godinez, L., and Prasad, M., 2013. Low-frequency complex conductivity of sandy and clayey materials. Journal of Colloid and Interface Science, 398: 193–209.

    Article  Google Scholar 

  • Revil, A., Karaoulis, M., Johnson, T., and Kemna, A., 2012a. Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeology Journal, 20(4): 617–658.

    Article  Google Scholar 

  • Revil, A., Koch, K., and Holliger, K., 2012b. Is it the grain size or the characteristic pore size that controls the induced polarization relaxation time of clean sands and sandstones? Water Resources Research, 48(5): 1–7.

    Article  Google Scholar 

  • Riedel, M., Collett, T. S., and Hyndman, R. D., 2005. Gas hydrate concentration estimates from chlorinity, electrical resistivity and seismic velocity. Geological Survey of Canada, Open File 4934. Ottawa, 1–36.

    Book  Google Scholar 

  • Rogner, H. H., 1997. An assessment of world hydrocarbon resources. Annual Review of Energy and the Environment, 22: 217–262.

    Article  Google Scholar 

  • Ruffet, C., Gueguen, Y., and Darot, M., 1991. Complex conductivity measurements and fractal nature of porosity. Geophysics, 56(6): 758–768.

    Article  Google Scholar 

  • Santamarina, J. C., and Ruppel, C., 2008. The impact of hydrate saturation on the mechanical, electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Proceedings of the 6th International Conference on Gas Hydrate. Vancouver, 1–13.

  • Schmutz, M., Blondel, A., and Revil, A., 2012. Saturation dependence of the quadrature conductivity of oil-bearing sands. Geophysical Research Letters, 39(3): L03402.

    Article  Google Scholar 

  • Seigel, H. O., 1959. Mathematical formulation and type curves for induced polarization. Geophysics, 24(3): 547–565.

    Article  Google Scholar 

  • Shankar, U., and Riedel, M., 2011. Gas hydrate saturation in the Krishna-Godavari Basin from P-wave velocity and electrical resistivity logs. Marine and Petroleum Geology, 28(10): 1768–1778.

    Article  Google Scholar 

  • Shepard, F. P., 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, 24(3): 151–158.

    Google Scholar 

  • Simandoux, P., 1963. Dielectric measurements on porous media, application to the measurements of water saturation: Study of behavior of argillaceous formations. Revue de L’institut Francais du Petrole, 18: 193–215.

    Google Scholar 

  • Sriram, G., Dewangan, P., and Ramprasad, T., 2014. Modified effective medium model for gas hydrate bearing, clay-dominated sediments in the Krishna-Godavari Basin. Marine and Petroleum Geology, 58: 321–330.

    Article  Google Scholar 

  • Sun, J., Li, C., Hao, X., Liu, C., Chen, Q., and Wang, D., 2020. Study of the surface morphology of gas hydrate. Journal of Ocean University of China, 19(2): 331–338.

    Article  Google Scholar 

  • Tarasov, A., and Titov, K., 2013. On the use of the Cole-Cole equations in spectral induced polarization. Geophysical Journal International, 195(1): 352–356.

    Article  Google Scholar 

  • Tong, M., and Tao, H., 2008. Permeability estimating from complex resistivity measurement of shaly sand reservoir. Geophysical Journal International, 173(2): 733–739.

    Article  Google Scholar 

  • Ulrich, C., and Slater, L., 2004. Induced polarization measurements on unsaturated, unconsolidated sands. Geophysics, 69(3): 762–771.

    Article  Google Scholar 

  • Vinegar, H. J., and Waxman, M. H., 1984. Induced polarization of shaly sands. Geophysics, 49(8): 1267–1287.

    Article  Google Scholar 

  • Wang, X., Hutchinson, D. R., Wu, S., Yang, S., and Guo, Y., 2011. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea. Journal of Geophysical Research: Solid Earth, 116: B05102.

    Google Scholar 

  • Waxman, M. H., and Smits, L. J. M., 1968. Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8(2): 107–122.

    Article  Google Scholar 

  • Wei, J., Liang, J., Lu, J., Zhang, W., and He, Y., 2019. Characteristics and dynamics of gas hydrate systems in the northwestern South China Sea—Results of the fifth gas hydrate drilling expedition. Marine and Petroleum Geology, 110: 287–298.

    Article  Google Scholar 

  • Weller, A., Nordsiek, S., and Debschütz, W., 2010. Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization. Geophysics, 75(6): 215–226.

    Article  Google Scholar 

  • Worthington, P. F., and Collar, F. A., 1984. Relevance of induced polarization to quantitative formation evaluation. Marine and Petroleum Geology, 1(1): 14–26.

    Article  Google Scholar 

  • Wu, P., Li, Y., Sun, X., Liu, W., and Song, Y., 2021. Mechanical characteristics of hydrate-bearing sediment: A review. Energy & Fuels, 35(2): 1041–1057.

    Article  Google Scholar 

  • Xing, L., Niu, J., Zhang, S., Cao, S., Wang, B., Lao, L., et al., 2022. Experimental study on hydrate saturation evaluation based on complex electrical conductivity of porous media. Journal of Petroleum Science and Engineering, 208: 109539.

    Article  Google Scholar 

  • Xing, L., Qi, S., Xu, Y., Wang, B., Lao, L., Wei, W., et al., 2021. Numerical study on complex conductivity characteristics of hydrate-bearing porous media. Journal of Natural Gas Science and Engineering, 95: 104145.

    Article  Google Scholar 

  • Xing, L., Zhu, T., Niu, J., Liu, C., and Wang, B., 2020. Development and validation of an acoustic-electrical joint testing system for hydrate-bearing porous media. Advances in Mechanical Engineering, 12(3): 1–11.

    Article  Google Scholar 

  • Yun, T. S., Santamarina, J. C., and Ruppel, C., 2007. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. Journal of Geophysical Research: Solid Earth, 112: B04106.

    Article  Google Scholar 

  • Zhang, Q., Yang, Z., He, T., Lu, H., and Zhang, Y., 2021. Growth pattern of dispersed methane hydrates in brine-saturated unconsolidated sediments via joint velocity and resistivity analysis. Journal of Natural Gas Science and Engineering, 96: 104279.

    Article  Google Scholar 

  • Zhang, Y., Park, H., Nishizawa, O., Kiyama, T., Liu, Y., Chae, K., et al., 2017. Effects of fluid displacement pattern on complex electrical impedance in Berea sandstone over frequency range 104–106 Hz. Geophysical Prospecting, 65(4): 1053–1070.

    Article  Google Scholar 

  • Zhang, Z., Liu, L., Ning, F., Liu, Z., Sun, J., Li, X., et al., 2022. Effect of stress on permeability of clay silty cores recovered from the Shenhu hydrate area of the South China Sea. Journal of Natural Gas Science and Engineering, 99: 104421.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. 20CX05005A), the Major Scientific and Technological Projects of CNPC (No. ZD2019-184-001), the PetroChina Innovation Foundation (No. 2018D-5007-0214), the Shandong Provincial Natural Science Foundation (No. ZR2019MEE095), and the National Natural Science Foundation of China (No. 4217 4141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanchang Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, L., Zhang, S., Zhang, H. et al. Saturation Estimation with Complex Electrical Conductivity for Hydrate-Bearing Clayey Sediments: An Experimental Study. J. Ocean Univ. China 23, 173–189 (2024). https://doi.org/10.1007/s11802-023-5492-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5492-x

Key words

Navigation