Skip to main content
Log in

Organic Carbon Deposition on the Inner Shelf of the East China Sea Constrained by Sea Level and Climatic Changes Since the Last Deglaciation

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The East China Sea (ECS), which is located in the transitional zone between land and ocean, is the main site for the burial of sedimentary organic carbon. Despite good constraints of the modern source to the sinking process of organic carbon, its fate in response to changes in climate and sea level since the last deglaciation remains poorly understood. We aim to fill this gap by presenting a high-resolution sedimentary record of core EC2005 to derive a better understanding of the evolution of the depositional environment and its control on the organic deposition since 17.3 kyr. Our results suggest that sedimentary organic carbon was deposited in a terrestrial environment before the seawater reached the study area around 13.1 kyr. This significant transition from a terrestrial environment to a marine environment is reflected by the decrease in TOC/TN and TOC/TS ratios, which is attributed to deglacial sea level rise. The sea level continued to rise until it reached its highstand at approximately 7.3 kyr when the mud depocenter was developed. Our results further indicate that the deposition of the sedimentary organic carbon could respond quickly to abrupt cold events, including the Heinrich stadial 1 and the Younger Dryas during the last deglaciation, as well as ‘Bond events’ during the Holocene. We propose that the rapid response of the organic deposition to those cold events in the northern hemisphere is linked to the East Asian winter monsoon. These new findings demonstrate that organic carbon deposition and burial on the inner shelf could effectively document sea level and climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, M. A., Bianchi, T. S., McKee, B. A., and Sampere, T. P., 2007. Carbon burial on river-dominated continental shelves: Impact of historical changes in sediment loading adjacent to the Mississippi River. Geophysical Research Letters, 34(1): L01606.

    Article  Google Scholar 

  • Barker, S., Diz, P., Vautravers, M. J., Pike, J., Knorr, G., Hall, I. R., et al., 2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 7233(457): 1097–1102.

    Article  Google Scholar 

  • Barlow, N. L. M., Shennan, I., Long, A. J., Gehrels, W. R., Saher, M. H., Woodroffe, S. A., et al., 2013. Salt marshes as late Holocene tide gauges. Global and Planetary Change, 106: 90–110.

    Article  Google Scholar 

  • Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G., 2013. The changing carbon cycle of the coastal ocean. Nature, 504(7478): 61–70.

    Article  Google Scholar 

  • Berner, R. A., 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. American Journal of Science, 282(4): 451–473.

    Article  Google Scholar 

  • Berner, R. A., and Raiswell, R., 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 12(6): 365.

    Article  Google Scholar 

  • Bi, L., Yang, S., Li, C., Guo, Y., Wang, Q., Liu, J. T., et al., 2015. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes. Geochemistry, Geophysics, Geosystems, 16(9): 3034–3052.

    Article  Google Scholar 

  • Bianchi, T. S., 2011. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. Proceedings of the National Academy of Sciences, 108(49): 19473–19481.

    Article  Google Scholar 

  • Bianchi, T. S., and Allison, M. A., 2009. Large-river delta-front estuaries as natural ‘recorders’ of global environmental change. Proceedings of the National Academy of Sciences, 106(20): 8085–8092.

    Article  Google Scholar 

  • Bianchi, T. S., Galler, J. J., and Allison, M. A., 2007. Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuarine, Coastal and Shelf Science, 73(1–2): 211–222.

    Article  Google Scholar 

  • Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., et al., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365(6442): 143–147.

    Article  Google Scholar 

  • Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., et al., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294(5549): 2130–2136.

    Article  Google Scholar 

  • Boski, T., Moura, D., Veiga-Pires, C., Camacho, S., Duarte, D., Scott, D. B., et al., 2002. Postglacial sea-level rise and sedimentary response in the Guadiana Estuary, Portugal/Spain border. Sedimentary Geology, 150(1–2): 103–122.

    Article  Google Scholar 

  • Chang, F., Li, T., Xiong, Z., and Xu, Z., 2015. Evidence for sea level and monsoonally driven variations in terrigenous input to the northern East China Sea during the last 24.3 ka. Pale-oceanography, 30(6): 642–658.

    Google Scholar 

  • Chen, Z., Wan, S., Zhang, J., Zhao, D., Huang, J., Pei, W., et al., 2022. Human impact overwhelms long-term climatic control on C4 vegetation in the Yellow River Basin after 3 ka BP. Geosystems and Geoenvironment, 1(2): 100021.

    Article  Google Scholar 

  • Dong, J., Li, A., Liu, X., Wan, S., Feng, X., Lu, J., et al., 2018. Sea-level oscillations in the East China Sea and their implications for global seawater redistribution during 14.0-10.0kyr BP. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 298–308.

    Article  Google Scholar 

  • Dong, J., Li, A., Liu, X., Wan, S., Xu, F., and Shi, X., 2020. Holocene climate modulates mud supply, transport, and sedimentation on the East China Sea shelf. Journal of Geophysical Research: Earth Surface, 125(10): 1–18.

    Google Scholar 

  • Dong, J., Li, A., Lu, Z., Liu, X., Wan, S., Yan, H., et al., 2021. Millennial-scale interaction between the East Asian winter monsoon and El Niño-related tropical Pacific precipitation in the Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110442.

    Article  Google Scholar 

  • Dykoski, C., Edwards, R., Cheng, H., Yuan, D., Cai, Y., Zhang, M., et al., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1–2): 71–86.

    Article  Google Scholar 

  • Emery, K. O., Wigley, R. L., Bartlett, A. S., Rubin, M., and Barghoorn, E. S., 1967. Freshwater peat on the continental shelf. Science, 158(3806): 1301–1307.

    Article  Google Scholar 

  • Fiedel, S. J., 2011. The mysterious onset of the Younger Dryas. Quaternary International, 242(2): 262–266.

    Article  Google Scholar 

  • Flemming, B. W., and Delafontaine, M. T., 2000. Mass physical properties of muddy intertidal sediments: Some applications, misapplications and non-applications. Continental Shelf Research, 20(10): 1179–1197.

    Article  Google Scholar 

  • Gao, S., Wang, D., Yang, Y., Zhou, L., Zhao, Y., Gao, W., et al., 2015. Holocene sedimentary systems on a broad continental shelf with abundant river input: Process-product relationships. Geological Society of London Special Publications, 429: 223–259.

    Article  Google Scholar 

  • Gong, G. C., Wen, Y. H., Wang, B. W., and Liu, G. J., 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6/7): 1219–1236.

    Article  Google Scholar 

  • Goslin, J., Sansjofre, P., Vliet-Lanoë, B. V., and Delacourt, C., 2017. Carbon stable isotope (δ13C) and elemental (TOC, TN) geochemistry in saltmarsh surface sediments (western Brittany, France) a useful tool for reconstructing Holocene relative sea-level. Journal of Quaternary Science, 32(7): 989–1007.

    Article  Google Scholar 

  • Hall, I. R., and Mccave, I. N., 2000. Palaeocurrent reconstruction, sediment and thorium focussing on the Iberian margin over the last 140 ka. Earth & Planetary Science Letters, 178(1–2): 151–164.

    Article  Google Scholar 

  • Hao, T., Liu, X., Ogg, J., Liang, Z., Xiang, R., Zhang, X., et al., 2017. Intensified episodes of East Asian winter monsoon during the middle through late Holocene driven by North Atlantic cooling events: High-resolution lignin records from the South Yellow Sea, China. Earth and Planetary Science Letters, 479: 144–155.

    Article  Google Scholar 

  • Hu, B., Li, J., Zhao, J., Wei, H., Yin, X., Li, G., et al., 2014. Late Holocene elemental and isotopic carbon and nitrogen records from the East China Sea inner shelf: Implications for monsoon and upwelling. Marine Chemistry, 162: 60–70.

    Article  Google Scholar 

  • Hu, L., Shi, X., Bai, Y., Qiao, S., Li, L., Yu, Y., et al., 2016. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China. Journal of Marine Systems, 155: 50–58.

    Article  Google Scholar 

  • Hu, L., Shi, X., Yu, Z., Lin, T., Wang, H., Ma, D., et al., 2012. Distribution of sedimentary organic matter in estuarine-inner shelf regions of the East China Sea: Implications for hydrodynamic forces and anthropogenic impact. Marine Chemistry, 142–144: 29–40.

    Article  Google Scholar 

  • Jia, J., Gao, S., and Xue, Y., 2003. Sediment dynamic processes of the Yuehu inlet system, Shandong Peninsula, China. Estuarine, Coastal and Shelf Science, 57(5–6): 783–801.

    Article  Google Scholar 

  • Jiao, N., Zhang, Y., Zeng, Y., Gardner, W. D., Mishonov, A. V., Richardson, M. J., et al., 2007. Ecological anomalies in the East China Sea: Impacts of the Three Gorges Dam?. Water Research, 41(6): 1287–1293.

    Article  Google Scholar 

  • Kao, S. J., Lin, F. J., and Liu, K. K., 2003. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6–7): 1203–1217.

    Article  Google Scholar 

  • Korotky, A. M., Razjigaeva, N. G., Ganzey, L. A., Volkov, V. G., Grebennikova, T. A., Bazarova, V. B., et al., 1995. Late Pleistocene-Holocene coastal development of islands off Vietnam. Journal of Southeast Asian Earth Sciences, 11(4): 301–308.

    Article  Google Scholar 

  • Lamb, A. L., Wilson, G. P., and Leng, M. J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth Science Reviews, 75(1–4): 29–57.

    Article  Google Scholar 

  • Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 111(43): 15296–15303.

    Article  Google Scholar 

  • Lei, X., Zhang, H., Yuan, Z., Yao, S., and Zhao, M., 2011. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf. Continental Shelf Research, 31(10): 1106–1115.

    Article  Google Scholar 

  • Li, G., Li, P., Liu, Y., Qiao, L., Ma, Y., Xu, J., et al., 2014. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum. Earth- Science Reviews, 139: 390–405.

    Article  Google Scholar 

  • Li, X., Bianchi, T. S., Allison, M. A., Chapman, P., Mitra, S., Zhang, Z., et al., 2012. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Marine Chemistry, 145–147: 37–52.

    Article  Google Scholar 

  • Lian, E., Yang, S., Hui, W., Yang, C., and Liu, J. T., 2016. Kuroshio subsurface water feeds the wintertime Taiwan warm current on the inner East China Sea shelf. Journal of Geophysical Research: Oceans, 121(7): 4790–4803.

    Article  Google Scholar 

  • Liu, J. P., Milliman, J. D., Gao, S., and Cheng, P., 2004. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Marine Geology, 209(1–4): 45–67.

    Article  Google Scholar 

  • Liu, J. P., Li, A. C., Xu, K. H., Velozzi, D. M., Yang, Z. S., Milliman, J. D., et al., 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research, 26(17–18): 2141–2156.

    Article  Google Scholar 

  • Liu, J. P., Xu, K. H., Li, A. C., Milliman, J. D., Velozzi, D. M., Xiao, S. B., et al., 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology, 85(3–4): 208–224.

    Article  Google Scholar 

  • Liu, S., Mi, B., Fang, X., Li, X., Pan, H. J., Chen, M. T., et al., 2017. A preliminary study of a sediment core drilled from the mud area on the inner shelf of the East China Sea: Implications for paleoclimatic changes during the fast transgression period (13 ka B.P.–8 ka B.P.). Quaternary International, 441: 35–50.

    Article  Google Scholar 

  • Liu, S., Shi, X., Liu, Y., Wu, Y., Gang, Y., and Wang, X., 2013. Holocene paleoclimatic reconstruction based on mud deposits on the inner shelf of the East China Sea. Journal of Asian Earth Sciences, 69: 113–120.

    Article  Google Scholar 

  • Liu, X., Fike, D., Li, A., Dong, J., Xu, F., Zhuang, G., et al., 2019. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene. Chemical Geology, 505: 66–75.

    Article  Google Scholar 

  • Liu, X., Li, A., Dong, J., Lu, J., Huang, J., and Wan, S., 2018a. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: Implications for the development of the mud depocenter. Journal of Asian Earth Sciences, 151: 1–15.

    Article  Google Scholar 

  • Liu, X., Li, A., Fike, D. A., Dong, J., Xu, F., Zhuang, G., et al., 2020. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation. Marine Geology, 429: 106307.

    Article  Google Scholar 

  • Liu, X., Rendle-Bühring, R., and Henrich, R., 2018b. High- and low-latitude forcing of the East African climate since the LGM: Inferred from the elemental composition of marine sediments off Tanzania. Quaternary Science Reviews, 196: 124–136.

    Article  Google Scholar 

  • Liu, X., Zhang, M., Li, A., Dong, J., Zhang, K., Gu, Y., et al., 2022. Sedimentary pyrites and C/S ratios of mud sediments on the East China Sea inner shelf indicate late Pleistocene-Holocene environmental evolution. Marine Geology, 450: 106854.

    Article  Google Scholar 

  • Liu, X., Zhang, M., Li, A., Fan, D., Dong, J., Jiao, C., et al., 2021. Depositional control on carbon and sulfur preservation onshore and offshore the Oujiang Estuary: Implications for the C/S ratio as a salinity indicator. Continental Shelf Research, 227: 104510.

    Article  Google Scholar 

  • Mayer, L. M., 1994. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58(4): 1271–1284.

    Article  Google Scholar 

  • McKee, B. A., Aller, R. C., Allison, M. A., Bianchi, T. S., and Kineke, G. C., 2004. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes. Continental Shelf Research, 24(7–8): 899–926.

    Article  Google Scholar 

  • McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and Brown-Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428: 834–837.

    Article  Google Scholar 

  • Meyers, P. A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5–6): 213–250.

    Article  Google Scholar 

  • Milliman, J., and Farnsworth, K., 2011. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge University Press, Cambridge, 1–384.

    Book  Google Scholar 

  • Milliman, J. D., and Syvitski, J. P. M., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. Journal of Geology, 100(5): 525–544.

    Article  Google Scholar 

  • Milliman, J. D., Xie, Q., and Yang, Z., 1984. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the ocean. American Journal of Science, 284(7): 824–834.

    Article  Google Scholar 

  • Nan, Q., Li, T., Chen, J., Nigma, R., Yu, X., Xu, Z., et al., 2014. Late Holocene (∼2ka) East Asian monsoon variations inferred from river discharge and climate interrelationships in the Pearl River Estuary. Quaternary Research, 81(2): 240–250.

    Article  Google Scholar 

  • Qiao, S., Shi, X., Wang, G., Zhou, L., Hu, B., Hu, L., et al., 2017. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea. Marine Geology, 390: 270–281.

    Article  Google Scholar 

  • Raiswell, R., Hardisty, D. S., Lyons, T. W., Canfield, D. E., Owens, J. D., Planavsky, N. J., et al., 2018. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. American Journal of Science, 318(5): 491–526.

    Article  Google Scholar 

  • Sampere, T. P., Bianchi, T. S., Wakeham, S. G., and Allison, M. A., 2008. Sources of organic matter in surface sediments of the Louisiana continental margin: Effects of major depositional/transport pathways and Hurricane Ivan. Continental Shelf Research, 28(17): 2472–2487.

    Article  Google Scholar 

  • Schmidt, F., Hinrichs, K. U., and Elvert, M., 2010. Sources, transport, and partitioning of organic matter at a highly dynamic continental margin. Marine Chemistry, 118(1–2): 37–55.

    Article  Google Scholar 

  • Shakun, J. D., and Carlson, A. E., 2010. A global perspective on Last Glacial Maximum to Holocene climate change. Quarternary Science Reviews, 29(15–16): 1801–1816.

    Article  Google Scholar 

  • Shi, C., Zhang, D. D., and You, L., 2003. Sediment budget of the Yellow River Delta, China: The importance of dry bulk density and implications to understanding of sediment dispersal. Marine Geology, 199(1–2): 13–25.

    Article  Google Scholar 

  • Shi, Y., Xu, X., Sheng, H., Lv, J., Zhang, S., and Gao, J., 2022. Neglected role of continental circulation in cross-shelf sediment transport: Implications for paleoclimate reconstructions. Marine Geology, 443: 106703.

    Article  Google Scholar 

  • Sun, X., Fan, D., Liu, M., Liao, H., and Tian, Y., 2020. The fate of organic carbon burial in the river-dominated East China Sea: Evidence from sediment geochemical records of the last 70 years. Organic Geochemistry, 143: 103999.

    Article  Google Scholar 

  • Sun, Y., Clemens, S. C., Morrill, C., Lin, X., Wang, X., and An, Z., 2011. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience, 5(1): 46–49.

    Article  Google Scholar 

  • Sun, Y., Xiong, H., Lee, M. T., Brodie, C., and Zong, Y., 2021. Geochemical dynamics and depositional history from mangrove sediments within the Pearl River Estuary. Palaeogeography, Palaeoclimatology, Palaeoecology, 584: 110701.

    Article  Google Scholar 

  • Tu, L., Zhou, X., Cheng, W., Liu, X., Yang, W., and Wang, Y., 2017. Holocene East Asian winter monsoon changes reconstructed by sensitive grain size of sediments from Chinese coastal seas: A review. Quaternary International, 440: 82–90.

    Article  Google Scholar 

  • Wakeham, S. G., Canuel, E. A., Lerberg, E. J., Mason, P., Sampere, T. P., and Bianchi, T. S., 2009. Partitioning of organic matter in continental margin sediments among density fractions. Marine Chemistry, 115(3–4): 211–225.

    Article  Google Scholar 

  • Walsh, J. J., 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350(6313): 53–55.

    Article  Google Scholar 

  • Wang, J., Yao, P., Bianchi, T. S., Li, D., Zhao, B., Cui, X., et al., 2015. The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf. Chemical Geology, 402: 52–67.

    Article  Google Scholar 

  • Wang, K., Zheng, H., Tada, R., Irino, T., Zheng, Y., Saito, K., et al., 2014. Millennial-scale East Asian summer monsoon variability recorded in grain size and provenance of mud belt sediments on the inner shelf of the East China Sea during midto late Holocene. Quaternary International, 349: 79–89.

    Article  Google Scholar 

  • Wang, X. C., Sun, M. Y., and Li, A. C., 2008. Contrasting chemical and isotopic compositions of organic matter in Changjiang (Yangtze River) Estuarine and East China Sea shelf sediments. Journal of Oceanography, 64(2): 311–321.

    Article  Google Scholar 

  • Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., et al., 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(29): 2345–2348.

    Article  Google Scholar 

  • Wei, W., and Algeo, T. J., 2020. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochimica et Cosmochimica Acta, 287: 341–366.

    Article  Google Scholar 

  • Wei, W., Algeo, T. J., Lu, Y., Lu, Y. C., Liu, H., Zhang, S., et al., 2018. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China. International Journal of Coal Geology, 200: 1–17.

    Article  Google Scholar 

  • Wu, N., Xu, C., Li, A., Cao, H., Chen, Y., Zhang, X., et al., 2022. Oceanic carbon cycle in a symbiotic zone between hydrothermal vents and cold seeps in the Okinawa Trough. Geosystems and Geoenvironment, 1(3): 100059.

    Article  Google Scholar 

  • Xiao, S., Li, A., Liu, J. P., Chen, M., Xie, Q., Jiang, F., et al., 2006. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2–4): 293–304.

    Article  Google Scholar 

  • Xu, F., Li, A., Li, T., Xu, K., Chen, S., Qiu, L., et al., 2011. Rare earth element geochemistry in the inner shelf of the East China Sea and its implication to sediment provenances. Journal of Rare Earths, 29(7): 702–709.

    Article  Google Scholar 

  • Xu, F., Li, A., Xu, K., Li, T., Chen, S., Wan, S., et al., 2009. Cold event at 5500 a BP recorded in mud sediments on the inner shelf of the East China Sea. Chinese Journal of Oceanology and Limnology, 27(4): 975–984.

    Article  Google Scholar 

  • Xue, C., Sheng, H., Wei, D., Yang, Y., Wang, Y., and Jia, J., 2020. Dry bulk density analysis for inner shelf sediments of the East China Sea and its sedimentary implications. Oceanologia et Limnologia Sinica, 51(5): 1093–1107.

    Google Scholar 

  • Yang, D., Yin, B., Liu, Z., and Feng, X., 2011a. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer. Journal of Geophysical Research, 116(C5): C05015.

    Article  Google Scholar 

  • Yang, S., Bi, L., Li, C., Wang, Z., and Dou, Y., 2015. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary. Geological Society, London, Special Publications, 429(1): 137–152.

    Article  Google Scholar 

  • Yang, S., Tang, M., Yim, W. W. S., Zong, Y., Huang, G., Switzer, A. D., et al., 2011b. Burial of organic carbon in Holocene sediments of the Zhujiang (Pearl River) and Changjiang (Yangtze River) Estuaries. Marine Chemistry, 123(1–4): 1–10.

    Article  Google Scholar 

  • Yang, S., Wang, Z., Dou, Y., and Shi, X., 2014. A review of sedimentation since the Last Glacial Maximum on the continental shelf of eastern China. Geological Society, London, Memoirs, 41(1): 293–303.

    Article  Google Scholar 

  • Yao, P., Yu, Z., Bianchi, T. S., Guo, Z., Zhao, M., Knappy, C. S., et al., 2015. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf. Journal of Geophysical Research, 120(7): 1407–1429.

    Article  Google Scholar 

  • Yao, P., Zhao, B., Bianchi, T. S., Guo, Z., Zhao, M., Li, D., et al., 2014. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation. Continental Shelf Research, 91: 1–11.

    Article  Google Scholar 

  • Yu, F., Zong, Y., Lloyd, J. M., Huang, G., Leng, M. J., Kendrick, C., et al., 2010. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River Delta and Estuary, southern China. Estuarine, Coastal and Shelf Science, 87(4): 618–630.

    Article  Google Scholar 

  • Zhan, Q., Wang, Z., Xie, Y., Xie, J., and He, Z., 2011. Assessing C/N and δ13C as indicators of Holocene sea level and freshwater discharge changes in the subaqueous Yangtze Delta, China. The Holocene, 22(6): 697–704.

    Article  Google Scholar 

  • Zhang, J., Wu, Y., Jennerjahn, T. C., Ittekkot, V., and He, Q., 2007. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics. Marine Chemistry, 106(1–2): 111–126.

    Article  Google Scholar 

  • Zhang, K., Li, A., Huang, P., Lu, J., Liu, X., and Zhang, J., 2019. Sedimentary responses to the cross-shelf transport of terrigenous material on the East China Sea continental shelf. Sedimentary Geology, 384: 50–59.

    Article  Google Scholar 

  • Zhang, K., Li, A., Liu, X., Chen, M. T., Lu, J., Zhang, J., et al., 2021. Heavy mineral record from the East China Sea inner shelf: Implications for provenance and climate changes over the past 1500 years. Continental Shelf Research, 226: 104488.

    Article  Google Scholar 

  • Zhang, W., Jin, H., Zhang, F., Zhao, G., Yang, K., Li, H., et al., 2009. Organic carbon distribution in the Yangtze River Estuary — Hangzhou Bay and its adjacent sea area. Advances in Earth Science, 24(11): 1202–1209.

    Google Scholar 

  • Zhao, G., Ye, S., He, L., Yuan, H., Ding, X., Wang, J., et al., 2020. Historical change of carbon burial in late Quaternary sediments of the ancient Yellow River Delta on the west coast of Bohai Bay, China. Catena, 193: 104619.

    Article  Google Scholar 

  • Zheng, Y., Kissel, C., Zheng, H. B., Laj, C., and Wang, K., 2010. Sedimentation on the inner shelf of the East China Sea: Magnetic properties, diagenesis and paleoclimate implications. Marine Geology, 268(1–4): 34–42.

    Article  Google Scholar 

  • Zhou, F., Gao, X., Yuan, H., Song, J., and Chen, F., 2018. The distribution and seasonal variations of sedimentary organic matter in the East China Sea shelf. Marine Pollution Bulletion, 129(1): 163–171.

    Article  Google Scholar 

  • Zhu, C., Wagner, T., Talbot, H. M., Weijers, J. W. H., Pan, J. M., and Pancost, R. D., 2013. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea. Geochimica et Cosmochimica Acta, 117: 129–143.

    Article  Google Scholar 

  • Zong, Y., Lloyd, J. M., Leng, M. J., Yim, W. S., and Huang, G., 2006. Reconstruction of Holocene monsoon history from the Pearl River Estuary, southern China, using diatoms and carbon isotope ratios. Holocene, 16(2): 251–263.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41976053) and the Shandong Province Funds for Excellent Young Scholars (No. ZR2021YQ26).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiting Liu or Fangjian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, X., Xu, F. et al. Organic Carbon Deposition on the Inner Shelf of the East China Sea Constrained by Sea Level and Climatic Changes Since the Last Deglaciation. J. Ocean Univ. China 22, 1300–1312 (2023). https://doi.org/10.1007/s11802-023-5476-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5476-x

Key words

Navigation