Skip to main content

Advertisement

Log in

Cold event at 5 500 a BP recorded in mud sediments on the inner shelf of the East China Sea

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A 700-year record (1.0–1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMS14C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was compared with the Dongge stalagmite δ18O record during the mid-Holocene. The upper muddy section of Core EC2005 has been formed mainly by suspended sediments derived from the Changjiang (Yangtze) River mouth since 7.3 ka BP. High precipitation and a strengthened EAWM might have played key roles in the high sedimentation rate (1 324–1 986 cm/ka) between 5.9–5.2 ka BP. The EAWM strengthened when the Asian summer monsoon weakened, especially around 5 500 a BP, which corresponded to a worldwide cold event. The EAWM during the mid-Holocene shows statistically significant solar periodicities at 62 and 11 a. The 5 500 a BP cold event might be resulted from orbital forcing and changes in solar activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnihotri R, Dutta K, Bhushan R et al. 2002. Evidence for solar forcing on the Indian monsoon during the last millennium. Earth. Planet. Sci. Lett., 198: 521–527.

    Article  Google Scholar 

  • An Z, Porter S C, Kutzbach J E et al. 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary. Sci. Rev., 19: 743–762.

    Article  Google Scholar 

  • Berger A, Loutre M F. 1991. Insolation values for the climate of the last 10 million years. Quaternary. Sci. Rev., 10: 297–317.

    Article  Google Scholar 

  • Bianchi G G, McCave I N. 1998. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature, 397: 515–517.

    Article  Google Scholar 

  • Bond G, Kromer B, Beer J et al. 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294: 2 130–2 136.

    Article  Google Scholar 

  • Calvo E, Grimalt J, Jansen E. 2002. High resolution U37 K sea surface temperature reconstruction in the Norwegian Sea during the Holocene. Quaternary. Sci. Rev., 21: 1 385–1 394.

    Article  Google Scholar 

  • Dahl-Jensen D, Mosegaard K, Gundestrup N et al. 1998. Past temperatures directly from the Greenland Ice Sheet. Science, 282: 268–271.

    Article  Google Scholar 

  • de Vernal A, Hillaire-Marcel C. 2006. Provincialism in trends and high frequency changes in the northwest North Atlantic during the Holocene. Global Planet. Change, 54: 263–290.

    Article  Google Scholar 

  • deMenocal P, Ortiz J, Guilderson T et al. 2000. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary. Sci. Rev., 19: 347–361.

    Article  Google Scholar 

  • Denton G H, Karlén W. 1973. Holocene climatic variations—their pattern and possible cause. Quaternary. Res., 3: 155–205.

    Article  Google Scholar 

  • Feng X, Cui H, Tang K, et al. 1999. Tree-ring δD as indicator of Asian monsoon intensity. Quaternary. Res., 51: 262–266.

    Article  Google Scholar 

  • Hodell D A, Kanfoush S L, Shemesh A et al. 2001. Abrupt cooling of Antarctic surface waters and sea ice expansion in the South Atlantic sector of the Southern Ocean at 5 000 cal yr B.P. Quaternary. Res., 56: 191–198.

    Article  Google Scholar 

  • Hong Y T, Jiang H B, Liu T S et al. 2000. Response of climate to solar forcing recorded in a 6000-year δ18O time series of Chinese peat cellulose. Holocene, 10(1): 1–7.

    Article  Google Scholar 

  • Huang X P. 1984. Analysis of the Neolithic culture in Taihu Lake region. Prehistoric Res., 3: 14–21. (in Chinese with English abstract)

    Google Scholar 

  • Hughen K A, Baillie M G, Bard E et al. 2004. Marine04 Marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46(3): 1 059–1 086.

    Google Scholar 

  • Kalis A J, Merkt J, Wunderlich J. 2003. Environmental changes during the Holocene climatic optimum in central Europe-human impact and natural causes. Quaternary. Sci. Rev., 22: 33–79.

    Article  Google Scholar 

  • Kuhnt T, Schmiedl G, Ehrmann W et al. 2007. Deep-sea ecosystem variability of the Aegean Sea during the past 22 kyr as revealed by Benthic Foraminifera. Mar. Micropaleontol., 64: 141–162.

    Article  Google Scholar 

  • Lamy F, Rühlemann C, Hebbeln D et al. 2002. High- and low-latitude climate control on the position of the southern Peru-Chile Current during the Holocene. Paleoceanography, 17: 1 028, doi:1010.1029/2001PA000727.

    Article  Google Scholar 

  • Liu J, Li A, Xu Z, et al. 2007a. Manganese abnormity in Holocene sediments of the Bohai Sea. J. China Univ. Geosci., 18(2): 135–141.

    Article  Google Scholar 

  • Liu J, Saito Y, Wang H et al. 2007b. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Mar. Geol., 236: 165–187.

    Article  Google Scholar 

  • Liu J P, Li A C, Xu K H et al. 2006. Sedimentary features of the Changjiang River-derived along-shelf clinoform deposit in the East China Sea. Cont. Shelf. Res., 26: 2 141–2 156.

    Article  Google Scholar 

  • Liu J P, Milliman J D, Gao S et al. 2004. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Mar. Geol., 209: 45–67.

    Article  Google Scholar 

  • Liu J P, Xu K H, Li A C et al. 2007c. Flux and fate of Changjiang River sediment delivered to the East China Sea. Geomorphology, 85: 208–224.

    Article  Google Scholar 

  • Liu X Q, Shen J, Wang S M, et al. 2002. A 16000-year pollen record of Qinghai Lake and its paleoclimate and paleoenvironment. Chinese Sci. Bull., 47(22): 1 931–1 936.

    Google Scholar 

  • Magny M, de Beaulieu J L, Drescher-Schneider R et al. 2007. Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quaternary Sci. Rev., 26: 1 736–1 758.

    Google Scholar 

  • Magny M, Haas J N. 2004. A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. J. Quaternary Sci., 19(5): 423–430.

    Article  Google Scholar 

  • Morimoto M, Kayanne H, Abe O et al. 2007. Intensified mid-holocene asian monsoon recorded in corals from Kikai Island, subtropical northwestern Pacific. Quaternary. Res., 67: 204–214.

    Article  Google Scholar 

  • Oldfield F, Asioli A, Accorsi C A et al. 2003. A high resolution late Holocene palaeo environmental record from the central Adriatic Sea. Quaternary Sci. Rev., 22: 319–342.

    Article  Google Scholar 

  • Peng Y, Xiao J, Nakamura T, et al. 2005. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth. Planet. Sci. Lett., 233: 467–479.

    Article  Google Scholar 

  • Porter S C. 2000. Onset of Neoglaciation in the Southern Hemisphere. Quaternary. Sci., 15: 395–408.

    Article  Google Scholar 

  • Qin Y S, Zhao Y Y, Chen L R, et al. 1987. Geology of the East China Sea. Science Press, Beijing, China. p.1–290. (in Chinese)

    Google Scholar 

  • Reimer P J, Baillie M G L, Bard E et al. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46(3): 1 029–1 058.

    Google Scholar 

  • Schatten K H. 1988. A model for solar constant secular changes. Geophys. Res. Lett., 15: 121–124.

    Article  Google Scholar 

  • Schulz M, Mudelsee M. 2002. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci., 28: 421–426.

    Article  Google Scholar 

  • Shen J, Wang Y, Liu X et al. 2006. A 16 ka climate record deduced from δ13C and C/N ratio in Qinghai Lake sediments, northeastern Tibetan Plateau. Chinese. J. Oceanol. Limnol., 24(2): 103–110.

    Article  Google Scholar 

  • Shi S H. 1993. Climatic abrupt change events and their impact on human civilization during Holocene Megathermal in China. Mar. Geol. Quaternary. Geol., 13(4): 65–73. (in Chinese with English abstract)

    Google Scholar 

  • Shi Y F, Kong Z C, Wang S M et al. 1994. Climates and environments of the Holocene megathermal maximum in China. Sci. China Ser. B., 37(4): 481–493.

    Google Scholar 

  • Steig E J, Hart C P, White J W C et al. 1998. Changes in climate, ocean and ice sheet conditions in the Ross Embayment, Antarctica, at 6 ka. Annals. Glaciol., 27: 305–310.

    Google Scholar 

  • Stuiver M, Grootes P M, Braziunas T F. 1995. The GISP2 δ18O climate record of the past 16 500 years and the role of the sun, ocean and volcanoes. Quaternary. Res., 44: 341–354.

    Article  Google Scholar 

  • Sun J, Ding Z. 1998. Deposits and soils of the past 130,000 Years at the desert-loess transition in Northern China. Quaternary Res., 50: 148–156.

    Article  Google Scholar 

  • Sun X G, Fang M, Huang W. 2000. Spatial and temporal variations in suspended particulate matter transport on the Yellow and East China Sea shelf. Oceanologia et Limnologia Sinica, 31(6): 581–587. (in Chinese with English abstract)

    Google Scholar 

  • Tarasov P, Bezrukova E, Karabanov E et al. 2007. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr. Palaeoclimatol. Palaeoecol., 252: 440–457.

    Article  Google Scholar 

  • Thompson L G, Mosley-Thompson E, Davis M E et al. 1989. Holocene-late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science, 246: 474–477.

    Article  Google Scholar 

  • Villa-Martínez R, Villagrán C, Jenny B. 2003. The last 7500 cal yr B.P. of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quaternary. Res., 60: 284–293.

    Article  Google Scholar 

  • Wan S, Li A, Clift P D, et al. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol., 254: 561–582.

    Article  Google Scholar 

  • Wang H, Hong Y T, Zhu Y X, et al. 2004. The significance of the peat humidification on paleoclimate in Tibetan Plateau. Chinese. Sci. Bull., 49(7): 686–691. (in Chinese)

    Google Scholar 

  • Wang P, Clemens S, Beaufort L et al. 2005a. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quaternary. Sci. Rev., 24: 595–629.

    Article  Google Scholar 

  • Wang S W, Huang J B. 2006. The mid-Holocene drought-flood changes and the progress of Chinese ancient civilization. Prog. Nat. Sci., 16(10): 1 238–1 244. (in Chinese)

    Google Scholar 

  • Wang Y, Cheng H, Edwards R L et al., 2005b. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308: 854–857.

    Article  Google Scholar 

  • Webster P J, Magana V O, Palmer T N et al. 1998. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103: 14 451–14 510.

    Article  Google Scholar 

  • Wu W X, Liu D S. 2002. 5 500 a BP climatic event and its implications for the emergence of civilizations in Egypt and Mesopotamia and Neolithic cultural development in China. Earth. Sci. Frontiers. China. Univ. Geosci., 9(1): 155–162. (in Chinese with English abstract)

    Google Scholar 

  • Xiang R, Yang Z S, Saito Y et al. 2006. East Asia Winter Monsoon changes inferred from environmentally sensitive grain-size component records during the last 2300 years in mud area southwest off Cheju Island, ECS. Sci. China. Ser. D., 49(6): 604–614.

    Article  Google Scholar 

  • Xiao J Y, Lü H B, Zhou W J et al. 2007. Evolution of vegetation and climate since the last glacial maximum recorded at Dahu peat site, South China. Sci. China. Ser. D., 50(8): 1 209–1 217.

    Google Scholar 

  • Xiao S, Li A, Liu J P, et al. 2006. Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Changjiang River-derived mud in the East China Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 237: 293–304.

    Article  Google Scholar 

  • Xiao S B, Li A C, Chen M H et al. 2005a. Recent 8 ka mud records of the East Asian Winter Monsoon from the inner shelf of the East China Sea. Earth. Sci. J. China. Univ. Geosci., 30(5): 573–581. (in Chinese with English abstract)

    Google Scholar 

  • Xiao S B, Li A C, Jiang F Q et al. 2005b. Recent 2000-year geological records of mud in the inner shelf of the East China Sea and their climatic implications. Chinese. Sci. Bull., 50(5): 466–471.

    Google Scholar 

  • Xu F J, Li A C, Liu J G et al. 2007. Environmentally sensitive grain-size population at deposit centre on the inner shelf of the East China Sea. Mar. Geol. Quaternary. Geol., 27(Sup.): 16–20. (in Chinese)

    Google Scholar 

  • Xu F J, Li A C, Xiao S B et al. 2009. Paleoenvironmental evolution in the inner shelf of the East China Sea since the last deglaciation. Acta Sedimentologica Sinica, 27(1): 118–127. (in Chinese with English abstract)

    Google Scholar 

  • Xu H, Hong Y, Lin Q et al. 2006. Temperature responses to quasi-100-yr solar variability during the past 6000 years based on δ18O of peat cellulose in Hongyuan, eastern Qinghai-Tibet plateau, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 230: 155–164.

    Article  Google Scholar 

  • Yang Z S, Guo Z G, Wang Z X et al. 1992. Basic pattern of transport of suspended mater from the Yellow Sea and East China Sea to the eastern deep seas. Acta Oceanologica Sinica, 14(2): 81–90. (in Chinese with English abstract)

    Google Scholar 

  • Yu G, Liu J. 2003. Geological records of volcanic explosions during the last 12000 years and the volcanic impacts on climate changes. J. Lake. Sci., 15(1): 11–20. (in Chinese with English abstract)

    Google Scholar 

  • Yu X F, Zhou W J, Franzen L G et al. 2006. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau. Sci. China (Ser. D), 49(6): 615–621.

    Article  Google Scholar 

  • Zhang M L, Qin J M, Zhang H L et al. 2005. Cooling events in isotope records from a stalagmite during the middle Holocene in Xundian area, Yunnan. Earth. Environ., 33(2): 16–22. (in Chinese with English abstract)

    Google Scholar 

  • Zhu Y, Chen F H, Zhang J W et al. 2001. A discussion on the effects of deteriorated environment event on the Neolithic culture of China, around 5 000 a BP. Prog. Geogr., 20(2): 111–121. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchun Li  (李安春).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 40576032 and 40776030), and Doctor Foundation of China University of Petroleum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Li, A., Xu, K. et al. Cold event at 5 500 a BP recorded in mud sediments on the inner shelf of the East China Sea. Chin. J. Ocean. Limnol. 27, 975–984 (2009). https://doi.org/10.1007/s00343-009-9273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-009-9273-1

Keyword

Navigation