Skip to main content
Log in

Pigment Distribution and Secretion in the Mantle of the Pacific Oyster (Crassostrea gigas)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The color of Mollusca shells is one of the most important attributes to consumers. At the cellular level, black color is mainly from the melanin produced by melanocytes. The melanosome is a specialized membrane-bound organelle that is involved in melanin synthesis, storage, and transportation. How the complex pigmentation process in the Crassostrea gigas is established remains an open question. The objectives of this studies are to examine the morphological characteristics of melanosomes or melanin of mantle pigmentation in the Pacific oyster, thereby investigating its contribution to shell color. The results show that pigmented granules of the mantles vary among the three lobes, and the melanosomes at different stages are enriched in distinct cargo molecules, which indicate the remarkable difference between the marginal mantle and central mantle. Examination of mantle histology reveals that the mantle margin of the oyster is characterized by three different folds, including the outer secretory, middle sensory, and inner muscular fold. Ferrous ion chelating assays against the tyrosine hydroxylase indicate that a large amount of melanin is localized in the inner surface of the middle fold. Transmission electron microscopy analyses show that the mantle edge is composed of tall columnar and cuboidal epidermal cells and some pigmented melanocytes intersperse among these cells. The numbers of melanosomes among the three lobes are different. In the inner fold and the middle fold of the mantle, some single dispersion, or aggregation of melanosomes with different degrees of melanization are found in the outer surface. Numerous melanosomes are distributed in the epithelium of the outer fold of the mantle, and mainly are at the apical microvillar surface near the lumen. However, melanosomes are occasionally observed in the central mantle, and they are relatively less. This work provides new insights into the process of melanin deposit in the mantle and shell pigmentation in C. gigas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Álvarez Nogal, R., and Molist García, P., 2015. The outer mantle epithelium of Haliotis tuberculata (Gastropoda Haliotidae): An ultrastructural and histochemical study using lectins. Acta Zoologica, 96: 452–459.

    Article  Google Scholar 

  • Aspengren, S., Hedberg, D., Sköld, H, N., and Wallin, M., 2008. Chapter 6 new insights in melanosome transport in vertebrate pigment cells. International Review of Cell and Molecular Biology, 272: 245–302.

    Article  Google Scholar 

  • Audino, J. A., Marian, J. E. A. R., Wanninger, A., and Lopes, S. G. B. C., 2015. Mantle margin morphogenesis in Nodipecten nodosus (Mollusca: Bivalvia): New insights into the development and the roles of bivalve pallial folds. BMC Developmental Biology, 15 (1): 22.

    Article  Google Scholar 

  • Ballarini, R., and Heuer, A. H., 2007. Secrets in the shell. American Scientist, 95: 422–429.

    Article  Google Scholar 

  • Bravo Portela, I., Martinez Zorzano, V. S., Molist-Perez, I., and Molist Garcia, P., 2012. Ultrastructure and glycoconjugate pattern of the foot epithelium of the abalone Haliotis tuberculata (Linnaeus, 1758) (Gastropoda, Haliotidae). Scientific World Journal, 1011: 1–12.

    Article  Google Scholar 

  • Bubel, A., 1973. An electron-microscope study of periostracum formation in some marine bivalves. II. The cells lining the periostracal groove. Marine Biology, 10: 222–234.

    Article  Google Scholar 

  • Budd, A., McDougall, C., Green, K., and Degnan, B. M., 2014. Control of shell pigmentation by secretory tubules in the abalone mantle. Frontiers in Zoology, 11: 62.

    Article  Google Scholar 

  • Carson, F. L., Martin, J. H., and Lynn, J. A., 1973. Formalin fixation for electron microscopy: A re-evaluation. American Journal of Clinical Pathology, 59: 365–373.

    Article  Google Scholar 

  • Checa, A., 2000. A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue and Cell, 32: 405–416.

    Article  Google Scholar 

  • Colville, A. E., and Lim, R. P., 2003. Microscopic structure of the mantle and papls in the freashwater mussles Velesunio ambiguus and Hyridella depressa. Molluscan Research, 23 (1): 1–20.

    Article  Google Scholar 

  • Derby, C. D., 2014. Cephalopod ink: Production, chemistry, functions and applications. Marine Drugs, 12: 2700–2730.

    Article  Google Scholar 

  • Fang, Z., Feng, Q., Chi, Y., Xie, L., and Zhang, R., 2008. Investigation of cell proliferation and differentiation in the mantle of Pinctada fucata (Bivalve, Mollusca). Marine Biology, 153 (4): 745–754.

    Article  Google Scholar 

  • Feng, D., Li, Q., and Yu, H., 2019. RNA interference by ingested dsRNA-expressing bacteria to study shell biosynthesis and pigmentation in Crassostrea gigas. Marine Biotechnology, 21 (4): 526–536.

    Article  Google Scholar 

  • Feng, D., Li, Q., Yu, H., Zhao, X., and Kong, L., 2015. Comparative transcriptome analysis of the Pacific oyster Crassostrea gigas characterized by shell colors: Identification of genetic bases potentially involved in pigmentation. PLoS One, 10: e0145257.

    Article  Google Scholar 

  • Gantsevich, M., Tyunnikova, A., and Malakhov, V., 2005. The genetics of shell pigmentation of the Mediterranean mussel Mytilus galloprovincialis Lamarck, 1819 (Bivalvia, Mytilida). Doklady Biological Sciences, 404: 370–371.

    Article  Google Scholar 

  • Ge, J., Li, Q., Yu, H., and Kong, L., 2014. Identification and mapping of a SCAR marker linked to a locus involved in shell pigmentation of the Pacific oyster (Crassostrea gigas). Aquaculture, 434: 249–253.

    Article  Google Scholar 

  • Han, Y., Xie, C., Fan, N., Song, H., Wang, X., Zheng, Y., et al., 2022. Identification of melanin in the mantle of the Pacific oyster Crassostrea gigas. Frontiers in Marine Science, 9: 880337.

    Article  Google Scholar 

  • Jabbour-Zahab, R., Chagot, D., Blanc, F., and Grizel, H., 1992. Mantle histology, histochemistry and ultrastructure of the pearl oyster Pinctada margaritifera (L.). Aquatic Living Resources, 5: 287–298.

    Article  Google Scholar 

  • Jolly, C., Berland, S., Milet, C., Borzeix, S., Lopez, E., and Doumenc, D., 2004. Zonal localization of shell matrix proteins in mantle of Haliotis tuberculata (Mollusca, Gastropoda). Marine Biotechnology, 6: 541–551.

    Article  Google Scholar 

  • Kniprath, E., 1972. Formation and structure of the periostraeum in Lymnaea stagnalis. Tissue Research, 9: 260–271.

    Article  Google Scholar 

  • Kondo, S., and Miura, T., 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329 (5999): 1616–1620.

    Article  Google Scholar 

  • Li, X., Bai, Z., Luo, H., Liu, Y., Wang, G., and Li, J., 2014. Cloning, differential tissue expression of a novel hcApo gene, and its correlation with total carotenoid content in purple and white inner-shell color pearl mussel Hyriopsis cumingii. Gene, 538 (2): 258–265.

    Article  Google Scholar 

  • Mao, J., Zhang, W., Wang, X., Song, J., Yin, D., Tian, Y., et al., 2019. Histological and expression differences among different mantle regions of the Yesso scallop (Patinopecten yessoensis) provide insights into the molecular mechanisms of biomineralization and pigmentation. Marine Biotechnology, 21 (5): 683–696.

    Article  Google Scholar 

  • Marin, F., and Luquet, G., 2004. Molluscan shell proteins. Comptes Rendus Palevol, 3: 469–492.

    Article  Google Scholar 

  • Marks, M. S., and Seabra, M. C., 2001. The melanosome: Membrane dynamics in black and white. Nature Reviews Molecular Cell Biology, 2: 738–748.

    Article  Google Scholar 

  • Mcdougall, C., Green, K., Jackson, D. J., and Degnan, B. M., 2011. Ultrastructure of the mantle of the gastropod Haliotis asinina and mechanisms of shell regionalization. Cells Tissues Organs, 194 (2–4): 103–107.

    Article  Google Scholar 

  • Miyamura, Y., Coelho, S. G., Wolber, R., Miller, S. A., Wakamatsu, K., Zmudzka, B. Z., et al., 2007. Regulation of human skin pigmentation and responses to ultraviolet radiation. Pigment Cell Research, 20: 2–13.

    Article  Google Scholar 

  • Noguchi, S., Kumazaki, M., Yasui, Y., Mori, T., Yamada, N., and Akao, Y., 2014. MicroRNA-203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b. Journal of Investigative Dermatology, 134: 461–469.

    Article  Google Scholar 

  • Palumbo, A., 2003. Melanogenesis in the ink gland of Sepia officinalis. Pigment Cell Research, 16 (5): 575–522.

    Article  Google Scholar 

  • Parvizi, F., Monsefi, M., Noori, A., and Ranjbar, M. S., 2018. Mantle histology and histochemistry of three pearl oysters: Pinctada persica, Pinctada radiata and Pteria penguin. Molluscan Research, 38 (1): 11–20.

    Article  Google Scholar 

  • Richardson, C. A., Runham, N. W., and Crisp, D. J., 1981. A histological and ultrastructural study of the cells of the mantle edge of a marine bivalve, Cerastoderma edule. Tissue Cell, 13 (4): 715–730.

    Article  Google Scholar 

  • Tëmkin, I., 2006. Anatomy, shell morphology, and microstructure of the living fossil Pulvinites exempla (Hedley, 1914) (Mollusca: Bivalvia: Pulvinitidae). Zoological Journal of the Linnean Society, 148 (3): 523–552.

    Article  Google Scholar 

  • Williams, S. T., 2017. Molluscan shell colour. Biological Reviews, 92 (2): 1039–1058.

    Article  Google Scholar 

  • Xu, C., Li, Q., Yu, H., Liu, S., Kong, L., and Chong, J., 2019. Inheritance of shell pigmentation in Pacific oyster Crassostrea gigas. Aquaculture, 512: 734249.

    Article  Google Scholar 

  • Yonge, C. M., 1977. Form and evolution in the Anomiacea (Mollusca: Bivalvia)-Pododesmus, Anomia, Patro, Enigmonia (Anomiidae); Placunanomia, Placuna (Placunidae Fam. Nov). Philosophical Transactions of the Royal Society of London Series B, 276 (950): 453–523.

    Article  Google Scholar 

  • Zhao, H., Yang, H., Zhao, H., Liu, S., and Wang, T., 2012. Differences in MITF gene expression and histology between albino and normal sea cucumbers (Apostichopus japonicus Selenka). Chinese Journal of Oceanology and Limnology, 30 (1): 80–91.

    Article  Google Scholar 

  • Zhu, Y., Li, Q., Yu, H., Liu, S., and Kong, L., 2021. Shell biosynthesis and pigmentation as revealed by the expression of tyrosinase and tyrosinase-like protein genes in Pacific oyster (Crassostrea gigas) with different shell colors. Marine Biotechnology, 23: 777–789.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (Nos. 31772843 and 31972789), the National Key R&D Program of China (No. 2018YFD0900200), the Earmarked Fund for Agriculture Seed Improvement Project of Shandong Province (No. 2017LZGC009), and the Ocean University of China-Auburn University Joint Research Center for Aquaculture and Environmental Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, Q., Yu, H. et al. Pigment Distribution and Secretion in the Mantle of the Pacific Oyster (Crassostrea gigas). J. Ocean Univ. China 22, 813–820 (2023). https://doi.org/10.1007/s11802-023-5379-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5379-x

Key words

Navigation