Skip to main content
Log in

The Influence of Sea Sprays on Drag Coefficient at High Wind Speed

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Field and laboratory observations indicate that the variation of drag coefficient with wind speed at high winds is different from that under low-to-moderate winds. By taking the effects of wave development and sea spray into account, a new parameterization of drag coefficient applicable from low to extreme winds is proposed. It is shown that, under low-to-moderate wind conditions so that the sea spray effects could be neglected, the nondimensional aerodynamic roughness first increases and then decreases with the increasing wave age; whereas under high wind conditions, the drag coefficient decreases with the increasing wind speed due to the modification of the logarithmic wind profile by the effect of sea spray droplets produced by bursting bubbles or wind tearing breaking wave crests. The drag coefficients and sea surface aerodynamic roughnesses reach their maximum values vary under different wave developments. Correspondingly, the reduction of drag coefficient under high winds reduces the increasing rate of friction velocity with increasing wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E. L., 1992. Sea spray and the turbulent air-sea heat fluxes. Journal of Geophysical Research, 97: 11429–11441.

    Article  Google Scholar 

  • Andreas, E. L., 2004. Spray stress revisited. Journal of Physical Oceanography, 34: 1429–1440.

    Article  Google Scholar 

  • Andreas, E. L., and Decosmo, J., 2002. The signature of sea spray in the HEXOS turbulent heat flux data. Bound-Layer Meteor, 103: 303–333.

    Article  Google Scholar 

  • Andreas, E. L., and Emanuel, K. A., 2001. Effects of sea spray on tropical cyclone intensity. Journal of the Atmospheric Sciences, 58: 3741–3751.

    Article  Google Scholar 

  • Black, P. G., D’Asaro, E. A., Drennan, W. M., French, J. R., Niiler, P. P., Sanford, T. B., et al., 2007. Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bulletin of the American Meteorological Society, 88(3): 357–374.

    Article  Google Scholar 

  • Chao, G. F., Shao, C. X., Wu, X. R., and Liu, K. X., 2019. Study on air-sea momentum exchange coefficient based on buoy data. Marine Information, 34(3): 35–42 (in Chinese with English abstract).

    Google Scholar 

  • Charnock, H., 1955. Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81: 639–640.

    Article  Google Scholar 

  • Donelan, M. A., 1982. The dependence of the aerodynamic drag coefficient on wave. The 1st International Conference on Meteorology & Air-Sea Interaction of the Coastal Zone. Boston, 381–387.

  • Donelan, M. A., 1990. Air-sea interaction. In: The Sea. LéMehauté, B., and Hanes, D. M., eds., Wiley, New York, 239–292.

    Google Scholar 

  • Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., et al., 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophysical Research Letters, 31: L18306, DOI: https://doi.org/10.1029/2004GL019460.

    Article  Google Scholar 

  • Drennan, W. M., Graber, H. C., Hauser, D., and Quentin, C., 2003. On the wave age dependence of wind stress over pure wind seas. Journal of Geophysical Research, 108(C3): 8062, DOI: https://doi.org/10.1029/2000JC000715.

    Article  Google Scholar 

  • Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B., 2003. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. Journal of Climate, 16: 571–591.

    Article  Google Scholar 

  • Fang, P. Z., Zhao, B. K., Zhang, S., Zeng, Z. H., and Lin, W., 2015. An observation of behavior of nearshore drag coefficient with moderate to strong wind speed. Journal of Tropical Meteorology, 31(5): 713–720.

    Google Scholar 

  • Iida, N., Toba, Y., and Chaen, M., 1992. A new expression for the production rate of sea water droplets on the sea surface. Journal of Oceanography, 48: 439–460.

    Article  Google Scholar 

  • Jones, I. S. F., and Toba, Y., 2001. Wind Stress Over the Ocean. Cambridge University Press, Cambridge, UK, 307pp, DOI: https://doi.org/10.1017/CBO9780511552076.

    Book  Google Scholar 

  • Li, D. L., Staneva, J., Bidlot, J. R., Grayek, S., Zhu, Y. C., and Yin, B. S., 2021. Improving regional model skills during typhoon events: A case study for super typhoon Lingling over the Northwest Pacific Ocean. Frontiers in Marine Science, 8: 1–22, DOI: https://doi.org/10.3389/fmars.2021.613913.

    Google Scholar 

  • Li, D. L., Staneva, J., Grayek, S., Behrens, A., Feng, J. L., and Yin, B. S., 2020. Skill assessment of an atmosphere-wave regional coupled model over the East China Sea with a focus on typhoons. Atmosphere, 11(3): 1–25, https://doi.org/10.3390/atmos11030252.

    Article  Google Scholar 

  • Li, F. N., Song, J. B., He, H. L., Li, S., Li, X., and Guan, S. D., 2016. Assessment of surface drag coefficient parametrizations based on observations and simulations using the weather research and forecasting model. Atmospheric and Oceanic Science Letters, 4: 327–336.

    Article  Google Scholar 

  • Liu, B., Guan, C. L., and Xie, L. A., 2012a. The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds. Journal of Geophysical Research, 117: C00J22, DOI: https://doi.org/10.1029/2011JC007786.

    Google Scholar 

  • Liu, B., Guan, C. L., Xie, L. A., and Zhao, D. L., 2012b. An investigation of the effects of wave state and sea spray on an idealized typhoon using an air-sea coupled modeling system. Advances Atmospheric Sciences, 29: 391–406.

    Article  Google Scholar 

  • Liu, B., Guan, C. L., Xie, L. A., and Zhao, D. L., 2015. Derivation of a wave-state-dependent sea spray generation function and its application in estimating sea spray heat flux. Science China: Earth Sciences, 58: 1862–1871, DOI: https://doi.org/10.1007/s11430-015-5169-4.

    Article  Google Scholar 

  • Liu, L., Fei, J. F., Huang, X. G., and Cheng, X. P., 2012c. The development of atmosphere-current-wave fully coupled model and its application during a typhoon process. Acta Physica Sinica — Chinese Edition, 61(14): 149201.

    Article  Google Scholar 

  • Makin, V. K., 2005. A note on the drag of the sea surface at hurricane winds. Boundary-Layer Meteorology, 115: 169–176, DOI: https://doi.org/10.1007/s10546-004-3647-x.

    Article  Google Scholar 

  • Masuda, A., and Kusaba, T., 1987. On the local equilibrium of winds and wind-waves in relation to surface drag. Journal of the Oceanographical Society of Japan, 43(1): 28–36.

    Article  Google Scholar 

  • Monahan, E. C., Spiel, D. E., and Davidson, K. L., 1986. A Model of Marine Aerosol Generation via Whitecaps and Wave Disruption. Springer, New York, 167–174.

    Google Scholar 

  • Peng, S., and Li, Y., 2015. A parabolic model of drag coefficient for storm surge simulation in the South China Sea. Scientific Reports, 5: 15496, https://doi.org/10.1038/srep15496.

    Article  Google Scholar 

  • Peng, S., Li, Y., and Xie, L., 2013. Adjusting the wind stress drag coefficient in storm surge forecasting using an adjoint technique. Journal of Atmospheric and Oceanic Technology, 30: 590–608.

    Article  Google Scholar 

  • Potter, H., Graber, H. C., Williams, N. J., Collins, C. O., Ramos, R. J., and Drennan, W. M., 2015. In situ measurements of momentum fluxes in typhoons. Journal of Atmospheric Sciences, 72: 104–118.

    Article  Google Scholar 

  • Powell, M. D., 2006. Drag coefficient distribution and wind speed dependence in tropical cyclones. Final report to the NOAA JHT program. Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, 26pp.

    Google Scholar 

  • Powell, M. D., Vickery, P. J., and Reinhold, T. A., 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422: 279–283.

    Article  Google Scholar 

  • Rajesh, K. R., Sandeepan, B. S., and David, M. H., 2020. Impact of different sea surface roughness on surface gravity waves using a coupled atmosphere-wave model: A case of Hurricane Isaac (2012). Ocean Dynamics, 70: 421–433.

    Article  Google Scholar 

  • Raupach, M. R., 1991. Saltation layers, vegetation canopies and roughness lengths. Acta Mechanica, 1: 83–96.

    Article  Google Scholar 

  • Schmidt, R. A., 1982. Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Boundary-Layer Meteorology, 23: 223–246.

    Article  Google Scholar 

  • Sheppard, P. A., 1958. Transfer across the Earth’s surface and through the air above. Quarterly Journal of the Royal Meteorological Society, 84: 205–224.

    Article  Google Scholar 

  • Shi, J., and Jiang, G. R., 2015. The influence of wind wave state on sea surface roughness. Oceanologia et Limnologia Sinica, 46(6): 1255–1262.

    Google Scholar 

  • Shi, J., Zhou, L., and Yang, L. Y., 2013. Influence of sea spray droplets on drag coefficient in high wind speed. Acta Physica Sinica, 62(3): 1–9.

    Google Scholar 

  • Smith, S. D., 1980. Wind stress and heat flux over the ocean in gale force winds. Journal of Physical Oceanography, 10: 709–726.

    Article  Google Scholar 

  • Smith, S. D., and Banke, E. G., 1975. Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101: 665–673, DOI: https://doi.org/10.1002/qj.49710142920.

    Article  Google Scholar 

  • Stewart, R. W., 1974. The air-sea momentum exchange. Boundary-Layer Meteorology, 16: 151–167.

    Article  Google Scholar 

  • Sugimori, Y., Akiyama, M., and Suzuki, N., 2000. Ocean measurement and climate prediction-expectation for signal processing. Journal of Signal Process, 4: 209–222.

    Google Scholar 

  • Toba, Y., Iida, N., Kawamura, H., Ebuchi, N., and Jones, L. S. F., 1990. Wave dependence of sea-surface wind stress. Journal of Physical Oceanography, 20: 705–721.

    Article  Google Scholar 

  • Troitskaya, Y., Kandaurov, A., Ermakova, O., Kozlov, D., Sergeev, D., and Zilitinkevich, S., 2018. The ‘bag breakup’ spume droplet generation mechanism at high winds. Part I: Spray generation function. Journal of Physical Oceanography, 48(9): 2167–2188.

    Article  Google Scholar 

  • Troitskaya, Y., Sergeev, D., Kandaurov, A., and Vdovin, M., 2019. The effect of foam on waves and the aerodynamic roughness of the water surface at high winds. Journal of Physical Oceanography, 49(4): 959–981.

    Article  Google Scholar 

  • Wu, J., 1980. Wind-stress coefficients over sea surface near neutral conditions — A revisit. Journal of Physical Oceanography, 10: 727–740.

    Article  Google Scholar 

  • Yelland, M. J., and Taylor, P. K., 1996. Wind stress measurements from the open ocean. Oceanography, 26: 541–558.

    Google Scholar 

  • Zhao, D. L., Toba, Y., Sugioka, K. I., and Komori, S., 2006. New sea spray generation function for spume droplets. Journal of Geophysical Research, 111: C02007, DOI: 02010.01029/02005JC002960.

    Article  Google Scholar 

  • Zubkovskii, S. L., and Kravchenko, T. K., 1967. Direct measurements of some turbulence in the near-water layer. Izvestiya Atmospheric and Oceanic Physics, 3: 127–135.

    Google Scholar 

Download references

Acknowledgements

The efforts of the researchers who obtained and published the data sets used in this study as well as their funding organizations are much appreciated. This study is supported by the National Key R&D Program of China (No. 2018YFB1501901), the National Natural Science Foundation of China (Nos. 51909114, U1806227 and U1906231), and the Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences (No. GXKLHY21-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyuan Shi or Zhaowei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Li, Q., Wang, Z. et al. The Influence of Sea Sprays on Drag Coefficient at High Wind Speed. J. Ocean Univ. China 22, 21–27 (2023). https://doi.org/10.1007/s11802-022-5050-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-5050-y

Key words

Navigation