Skip to main content
Log in

On the effect of sea spray on the aerodynamic surface drag under severe winds

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

We investigate the effect of the sea spray on the air-sea momentum exchange during the entire “life cycle” of a droplet, torn off the crest of a steep surface wave, and its fall down to the water, in the framework of a model covering the following aspects of the phenomenon: (1) motion of heavy particle in the driving air flow (equations of motion); (2) structure of the wind field (wind velocity, wave-induced disturbances, turbulent fluctuations); (3) generation of the sea spray; and (4) statistics of droplets (size distribution, wind speed dependence). It is demonstrated that the sea spray in strong winds leads to an increase in the surface drag up to 40 % on the assumption that the velocity profile is neutral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andreas EL (1998) A new sea spray generation function for wind speeds up to 32 m s−1. J Phys Oceanogr 28:2175–2184

    Article  Google Scholar 

  • Andreas EL (2004) Spray stress revised. J Phys Oceanogr 34:1429–1440

    Article  Google Scholar 

  • Andreas EL, DeCosmo J (1999) Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. In: Geernaert GL (ed) Air-sea exchange: physics, chemistry and dynamics. Kluwer Academic Publishers, Dordrecht, pp 327–362

    Chapter  Google Scholar 

  • Andreas EL, Edson JB, Monahan EC, Rouault MP, Smith SD (1995) The spray contribution to net evaporation from the sea. Bound Lay Meteorol 72:3–52

    Article  Google Scholar 

  • Andreas EL, Mahrt L, Vickers D (2012) A new drag relation for aerodynamically rough flow over the ocean. J Atmos Sci 69:2520–2536

    Article  Google Scholar 

  • Bao J-W, Fairall CW, Michelson SA, Bianco L (2011) Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon Weather Rev 139:3781–3797

    Article  Google Scholar 

  • Bell M, Montgomery MT, Emanuel KA (2012) Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J Atmos Sci 69:3197–3222

    Article  Google Scholar 

  • Blanchard DC (1963) The electrification of atmosphere by particles from bubbles in the sea. Prog Oceanogr 1:171–202

    Article  Google Scholar 

  • Bye JAT, Jenkins AD (2006) Drag coefficient reduction at very high wind speeds. J Geophys Res 111:C03024. doi:10.1029/2005JC003114

    Article  Google Scholar 

  • Bye JAT, Ghantous M, Wolff J-O (2010) On the variability of the Charnock constant and the functional dependence of the drag coefficient on wind speed. Ocean Dyn 60:851–860

    Article  Google Scholar 

  • Bye JAT, Wolff J-O, Lettmann KA (2014) On the variability of the Charnock constant and the functional dependence of the drag coefficient on wind speed: part II—observations. Ocean Dyn 64:969–974

    Article  Google Scholar 

  • Donelan MA, Pierson WJ (1987) Radar scattering and equilibrium ranges in wind-generated waves—with application to scatterometry. J Geophys Res 92:4971–5029

    Article  Google Scholar 

  • Donelan MA, Haus BK, Reul N, Plant WJ, Stiassnie M, Graber HC, Brown OB, Saltzman ES (2004) On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett 31:L18306

    Article  Google Scholar 

  • Edson JB, Fairall CW (1994) Spray droplet modeling. 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J Geophys Res 99(C12):25295–25311

    Article  Google Scholar 

  • Foreman RJ, Emeis S (2010) Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J Phys Oceanogr 40:2325–2332

    Article  Google Scholar 

  • French JR, Drennan WM, Zhang JA, Black PG (2007) Turbulent fluxes in the hurricane boundary layer. J Atmos Sci 64:1089–1102

    Article  Google Scholar 

  • Holthuijsen LH, Powell MD, Pietrzak JD (2012) Wind and waves in extreme hurricanes. J Geophys Res 117:C09003. doi:10.1029/2012JC007983

    Article  Google Scholar 

  • Jarosz E, Mitchell DA, Wang DW, Teague WJ (2007) Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science 315:1707–1709

    Article  Google Scholar 

  • Kleiss JM, Melville WK (2010) Observations of wave breaking kinematics in fetch-limited seas. J Phys Oceanogr 40:2575–2604

    Article  Google Scholar 

  • Koga M (1981) Direct production of droplets from breaking wind-waves—its observation by a multi-colored overlapping exposure photographing technique. Tellus 33:552–563

    Article  Google Scholar 

  • Kudryavtsev VN (2006) On the effect of sea drops on the atmospheric boundary layer. J Geophys Res 111:C07020

    Article  Google Scholar 

  • Kudryavtsev VN, Makin VK (2007) Aerodynamic roughness of the sea surface at high winds. Bound Lay Meteorol 125(2):289–303

    Article  Google Scholar 

  • Kudryavtsev V, Makin V (2011) Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound Lay Meteorol 40(3):383–410

    Article  Google Scholar 

  • Makin VK (2005) A note on drag of the sea surface at hurricane winds. Bound Lay Meteorol 115(1):169–176

    Article  Google Scholar 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Article  Google Scholar 

  • Smol’yakov AV (1973) Quadrupole radiation spectrum of plane turbulent boundary layer. Sov Phys Acoust 19:271–276

    Google Scholar 

  • Soloviev A, Lukas R (2014) The near-surface layer of the ocean: structure, dynamics, and applications, 2nd edn. Springer Science + Business Media, Dordrecht

    Book  Google Scholar 

  • Spiel DE (1994) The sizes of the jet droplets produced by air bubbles bursting on sea- and fresh-water surfaces. Tellus 46B:325–338

    Article  Google Scholar 

  • Spiel DE (1995) On the birth of jet drops from bubbles bursting on water surfaces. J Geophys Res 100:4995–5006

    Article  Google Scholar 

  • Spiel DE (1997) More on the births of jet drops from bubbles bursting on seawater surfaces. J Geophys Res 102:5815–5821

    Article  Google Scholar 

  • Troitskaya YI, Reutov VP (1995) Nonlinear growth rate of wind water waves and their excitation near the stability threshold. Radiophys Quantum Electron 38(3-4):133–136

    Google Scholar 

  • Troitskaya YI, Rybushkina GV (2008) Quasi-linear model of interaction of surface waves with strong and hurricane winds. Izv Atmos Oceanic Phys 44(5):621–645

    Article  Google Scholar 

  • Troitskaya Y, Sergeev D, Kandaurov A, Kazakov V (2011) Air-sea interaction under hurricane wind conditions. In: Lupo A (ed.) Recent hurricane research—climate, dynamics and social impacts, InTech, Rijeka, Croatia, pp 247–268

  • Troitskaya YI, Sergeev DA, Kandaurov AA, Baidakov GA, Vdovin MA, Kazakov VI (2012) Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions. J Geophys Res 117:C00J21

    Article  Google Scholar 

  • Veron F (2015) Ocean spray. Annu Rev Fluid Mech 39:419–446

    Google Scholar 

  • Veron F, Hopkins C, Harrison EL, Mueller JA (2012) Sea spray spume droplet production in high wind speeds. Geophys Res Lett 39:L16602

    Article  Google Scholar 

  • Vickery PJ, Wadhera D, Powell MD, Chen Y (2009) A hurricane boundary layer and wind field model for use in engineering applications. J Appl Meteorol Climatol 48:381–405

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant of the government of the Russian Federation (contract 11.G34.31.0048); the European Commission ERC-Ideas PoC Project 632295-INMOST (2014–2015); the Academy of Finland project ‘Atmosphere-hydrosphere interaction in the Baltic Basin and Arctic Seas’ ABBA Contract No. 280700 (2014–2017); RFBR (nos. 16-05-00839, 14-05-91767). Numerical code development and numerical modeling were supported by the Russian Science Foundation (nos. 14-17-00667 and 15-17-20009, respectively). YT was partially supported by FP7 collaborative Project No. 612610. Insightful comments by the referees are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Ezhova.

Additional information

Responsible Editor: Jörg-Olaf Wolff

Yuliya Troitskaya and Ekaterina Ezhova contributed equally to this work.

Appendix. Derivation of the law of the momentum flux conservation

Appendix. Derivation of the law of the momentum flux conservation

Here, we derive the conservation law for the momentum flux averaged over horizontal coordinate. Transforming Eq. (5) with account of Eq. (6) in Section 1 gives:

$$ \begin{array}{l}\frac{\partial {\rho}_a\left\langle u\right\rangle }{\partial {t}^{*}}+\frac{\partial }{\partial {z}^{*}}\left({\rho}_a\left\langle u\right\rangle \left(\left\langle v\right\rangle -\frac{\partial \eta }{\partial {t}^{*}}-\left\langle u\right\rangle \frac{\partial \eta }{\partial {x}^{*}}\right)\right)+\frac{\partial {\rho}_a{\left\langle u\right\rangle}^2}{\partial {x}^{*}}+\\ {}+\frac{\partial \left\langle p\right\rangle -{\rho}_a{\sigma}_{xx}}{\partial {x}^{*}}-\frac{\partial }{\partial {z}^{*}}\left(\left(\left\langle p\right\rangle -{\rho}_a{\sigma}_{xx}\right)\frac{\partial \eta }{\partial {x}^{*}}\right)=\frac{\partial {\rho}_a{\sigma}_{xz}}{\partial {z}^{*}}+f.\end{array} $$
(A1)

Averaging (A1) over the coordinate x* yields the conservation law for the momentum flux in MABL in curvilinear coordinates:

$$ \frac{\partial {\rho}_a{\overline{\left\langle u\right\rangle}}^{x*}}{\partial {t}^{*}}+\frac{\partial }{\partial {z}^{*}}\left({\rho}_a{\overline{\left\langle u\right\rangle \left(\left\langle v\right\rangle -\frac{\partial \eta }{\partial {t}^{*}}-\left\langle u\right\rangle \frac{\partial \eta }{\partial {x}^{*}}\right)}}^{x*}-{\overline{\left(\left\langle p\right\rangle -{\rho}_a{\sigma}_{xx}\right)\frac{\partial \eta }{\partial {x}^{*}}}}^{x*}\right)=\frac{\partial {\rho}_a\overset{\_\_\_x*}{\sigma_{xz}}}{\partial {z}^{*}}+\overset{\_\_x*}{f}. $$
(A2)

In stationary conditions (A1) yields:

$$ \frac{d}{d{z}^{*}}\left({\rho}_a\overset{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_x*}{\left\langle u\right\rangle \left(\left\langle v\right\rangle -\frac{\partial \eta }{\partial {t}^{*}}-\left\langle u\right\rangle \frac{\partial \eta }{\partial {x}^{*}}\right)-\left(\left\langle p\right\rangle -{\rho}_a{\sigma}_{xx}\right)\frac{\partial \eta }{\partial {x}^{*}}}\right)=\frac{d{\rho}_a\overset{\_\_\_x*}{\sigma_{xz}}}{d{z}^{*}}+\overset{\_\_x*}{f}. $$
(A3)

Integrating (A3) over z* and taking into account the boundary condition \( \overset{\_\_\_\_x*}{\sigma_{xz}}\to {u}_{*}^2 \) when z* → ∞, yields the following expression for the conservation of momentum flux:

$$ {\rho}_a\overset{\_\_\_x*}{\sigma_{xz}}={\rho}_a{u}_{*}^2-{\rho}_a{\tau}_{\mathrm{wave}}\left(z*\right)-F\left(z*\right). $$
(A4)

Here

$$ {\tau}_{\mathrm{wave}}\left(z*\right)=-{\overline{\left\langle u\right\rangle \left(\left\langle v\right\rangle -\frac{\partial \eta }{\partial {t}^{*}}-\left\langle u\right\rangle \frac{\partial \eta }{\partial {x}^{*}}\right)+\left(\frac{\left\langle p\right\rangle }{\rho_a}-{\sigma}_{xx}\right)\frac{\partial \eta }{\partial {x}^{*}}}}^{x*} $$
(A5)

is a wave momentum flux caused by the form drag of the water surface (a function of z* decreasing with the distance from the surface).

$$ F\left(z\ast \right)=-{\displaystyle \underset{z\ast }{\overset{\infty }{\int }}{\overline{f}}^{x\ast}\left(z{\textstyle \hbox{'}}\right)dz}{\textstyle \hbox{'}} $$
(A6)

is the momentum delivered from the air flow to spray in the layer from current z* to infinity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troitskaya, Y., Ezhova, E., Soustova, I. et al. On the effect of sea spray on the aerodynamic surface drag under severe winds. Ocean Dynamics 66, 659–669 (2016). https://doi.org/10.1007/s10236-016-0948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0948-9

Keywords

Navigation