Skip to main content

Advertisement

Log in

Enhanced Biodegradation of High-Salinity and Low-Temperature Crude-Oil Wastewater by Immobilized Crude-Oil Biodegrading Microbiota

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland (LEW), China. To improve the performance of crude-oil removal, microbiota was further immobilized by two methods, i.e., sodium alginate (SA), and polyvinyl alcohol and sodium alginate (PVA+SA). Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42–31.45 mg(L d)−1. The optimal inoculum size for the n-alkanes removal was 10% and 99.89%. Some members of genera Acinetobacter, Actinophytocola, Aquabacterium, Dysgonomonas, Frigidibacter, Sphingobium, Serpens, and Pseudomonas dominated in crude-oil degrading microflora. Though the removal efficiency was lower than free bacteria when the temperature was 15 °C, SA and PVA+SA immobilization improved the resistance to salinity. The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alysson, L., Angelim, S., Bárbara, C., Lyanderson, F., amd Vânia, M., 2013. An innovative bioremediation strategy using a bacterial consortium entrapped in chitosan beads. Journal of Environmental Management, 127: 10–17.

    Google Scholar 

  • Bayat, Z., Mehdi, H., and Majid, A., 2015. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf. Marine Pollution Bulletin, 101: 85–91.

    Article  Google Scholar 

  • Beddow, J., Björn, C., Lead, J., Sapp, M., Lyons, B., McKew, B., et al., 2014. Estuarine sediment hydrocarbon-degrading microbial communities demonstrate resilience to nanosilver. International Biodeterioration & Biodegradation, 96: 206–215.

    Article  Google Scholar 

  • Cueva, S. C., César, H. R., Nicolás, O. S. J., Antonio, R. C., and Javier, L. M., 2016. Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water, Air, & Soil Pollution, 227: 1–12.

    Google Scholar 

  • Curtis, D., Elango, V., Collins, A. W., Rodrigue, M., and Pardue, J., H., 2018. Transport of crude oil and associated microbial populations by washover events on coastal headland beaches. Marine Pollution Bulletin, 130: 229–239.

    Article  Google Scholar 

  • Duan, M., Li, C., Wang, X., Fang, S., Xiong, Y., and Shi, P., 2019. Solid separation from the heavy oil sludge produced from Liaohe Oilfield. Journal of Petroleum Science and Engineering, 172: 1112–1119.

    Article  Google Scholar 

  • Gao, Y. S., Wang, X. P., Li, J. L., Lee, C. T., Ong, P. Y., Zhang, Z. J., et al., 2019. Effect of aquaculture salinity on nitrification and microbial community in moving bed bioreactors with immobilized microbial granules. Bioresource Technology, 297: 122427.

    Article  Google Scholar 

  • Gentili, A. R., María, A. C., Marcela, F., and María, S. R., 2006. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. International Biodeterioration & Biodegradation, 57: 222–228.

    Article  Google Scholar 

  • González, N., Simarro, R., Molina, M. C., Bautista, L. F., Delgado, L., and Villa, J. A., 2011. Effect of surfactants on PAH biodegradation by a bacterial consortium and on the dynamics of the bacterial community during the process. Bioresource Technology, 102: 9438–9446.

    Article  Google Scholar 

  • Gray, N. D., Sherry, A., Grant, R. J., Rowan, A. K., Hubert, C. R. J., Callbeck, C. M., et al., 2011. The quantitative significance of syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environmental Microbiology, 13: 2957–2975.

    Article  Google Scholar 

  • Hassanshahian, M., Emtiazi, G., and Cappello, S., 2012. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Marine Pollution Bulletin, 64: 7–12.

    Article  Google Scholar 

  • Hassanshahian, M., Zeynalipour, M. S., and Musa, F. H., 2014. Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance). Marine Pollution Bulletin, 82: 39–44.

    Article  Google Scholar 

  • He, H., Chen, Y., Li, X., Cheng, Y., Yang, C., and Zeng, G., 2017. Influence of salinity on microorganisms in activated sludge processes: A review. International Biodeterioration & Biodegradation, 119: 520–527.

    Article  Google Scholar 

  • Huang, X., Bai, J., Li, K., Zhao, Y., Tian, W., and Dang, J., 2017a. Characteristics of two novel cold-and salt-tolerant ammonia-oxidizing bacteria from Liaohe Estuarine Wetland. Marine Pollution Bulletin, 114: 192–200.

    Article  Google Scholar 

  • Huang, X., Dong, W., Wang, H., and Jiang, S., 2017b. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater. Bioresource Technology, 241: 969–978.

    Article  Google Scholar 

  • Hou, D., Shen, X., Luo, Q., He, Y., Wang, Q., and Liu, Q., 2013. Enhancement of the diesel oil degradation ability of a marine bacterial strain by immobilization on a novel compound carrier material. Marine Pollution Bulletin, 67: 146–151.

    Article  Google Scholar 

  • Jeong, S. W., and Kim, J., 2015. Oil-degrading strain Aquabacterium olei sp. nov., isolated from oil-contaminated soil in a US army base in South Korea. I. J. S., International Journal of Systematic and Evolutionary Microbiology, 65: 3597–3602.

    Article  Google Scholar 

  • Koma, D., Hasumi, F., Yamamoto, E., Ohta, T., and Yong, S., 2001. Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. Journal of Bioscience and Bioengineering, 91: 94–96.

    Article  Google Scholar 

  • Kostka, J. E., Prakash, O., Overholt, W. A., Green, S. J., Freyer, G., Canion, A., et al., 2011. Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Applied and Environmental Microbiology, 77: 7962–7974.

    Article  Google Scholar 

  • Kujawinski, E. B., Kido, S. M. C., Valentine, D. L., Boysen, A. K., Longnecker, K., and Redmond, M. C., 2011. Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 45: 1298–1306.

    Article  Google Scholar 

  • Lal, B., and Khanna, S., 1996. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. Journal of Applied Bacteriology, 81: 355–362.

    Article  Google Scholar 

  • Lau, K. L., Tsang, Y. Y., and Chiu, S. W., 2003. Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere, 52: 1539–1546.

    Article  Google Scholar 

  • Lauber, C. L., Strickland, M. S., Bradford, M. A., and Fierer, N., 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40: 2407–2415.

    Article  Google Scholar 

  • Liao, J., Wang, J., and Huang, Y., 2015. Bacterial community features are shaped by geographic location, physicochemical properties, and oil contamination of soil in main oil fields of China. Microbial Ecology, 70: 380–389.

    Article  Google Scholar 

  • Lin, T., Ye, S., Ma, C., Ding, X., Brix, H., Yuan, H., et al., 2013. Sources and preservation of organic matter in soils of the wetlands in the Liaohe (Liao River) Delta, North China. Marine Pollution Bulletin, 71: 276–285.

    Article  Google Scholar 

  • Liu, B., Ju, M., Liu, J., Wu, W., and Li, X., 2016. Isolation, identification, and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain. Marine Pollution Bulletin, 106(1): 301–307.

    Article  Google Scholar 

  • Liu, C., Yu, D., Wang, Y., Chen, G., Tang, P., and Huang, S., 2020. A novel control strategy for the partial nitrification and anammox process (PN/A) of immobilized particles: Using salinity as a factor. Bioresource Technology, 302: 122864.

    Article  Google Scholar 

  • Liu, Y., Hu, X., and Liu, H., 2016. Industrial-scale culturing of the crude oil-degrading marine Acinetobacter sp. strain HC8-3S. International Biodeterioration & Biodegradation, 107: 56–61.

    Article  Google Scholar 

  • Luo, X. X., and Xing, Z. Q., 2010. Comparative study on characteristics and influencing factors of soil respiration of reed wetlands in yellow river estuary and Liaohe river estuary. Procedia Environmental Sciences, 2: 888–895.

    Article  Google Scholar 

  • Magoč, T. J., and Steven L. S., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27: 2957–2963.

    Article  Google Scholar 

  • Mahmoudi, N., Porter, T. M., Zimmerman, A. R., Fulthorpe, R. R., Kasozi, G. N., Silliman, B. R., et al., 2013. Rapid degradation of deepwater horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments. Environmental Science & Technology, 47(23): 13303–13312.

    Article  Google Scholar 

  • Neethu, C. S., Purvaja, S. R., and Ramesh, R. R., 2019. Oil-spill triggered shift in indigenous microbial structure and functional dynamics in different marine environmental matrices. Scientific Reports, 9: 1–13.

    Article  Google Scholar 

  • Nie, H. Y., Nie, M. Q., Diwu, Z. J., Wang, L., Yan, H., Lin, Y. Y., et al., 2019. Biological treatment of high salinity and low pH produced water in oilfield with immobilized cells of P. aeruginosa NY3 in a pilot-scale. Journal of Hazardous Materials, 381: 121232.

    Article  Google Scholar 

  • Pourmand, S., Abdouss, M., and Rashidi, A., 2015. Fabrication of nanoporous graphene by chemical vapor deposition (CVD) and its application in oil spill removal as a recyclable nanosorbent. Journal of Industrial and Engineering Chemistry, 22: 8–18.

    Article  Google Scholar 

  • Prince, R. C., McFarlin, K. M., Butler, J. D., Febbo, E. J., Wang, F. C. Y., and Nedwed, T. J., 2013. The primary biodegradation of dispersed crude oil in the sea. Chemosphere, 90: 521–526.

    Article  Google Scholar 

  • Qin, T., Shen, B., Zhou, Q., and Liu, J., 2014. Biodegradation performance of an inner-loop three-phase fluidized-bed bio-reactor to treat petrochemical wastewater. Petroleum Science and Technology, 32: 848–855.

    Article  Google Scholar 

  • Rahman, K. S. M., Rahman, J. T., Lakshmanaperumalsamy, P., and Banat, M., 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource Technology, 85: 257–261.

    Article  Google Scholar 

  • Rowland, H. A. L., Boothman, C., Pancost, R., Gault, A. G., Polya, D. A., and Lloyd, J. R., 2009. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from West Bengal aquifer sediments. Journal of Environmental Quality, 38: 1598–1607.

    Article  Google Scholar 

  • Saha, T. K., and Pal, S., 2019. Exploring physical wetland vulnerability of Atreyee river basin in India and Bangladesh using logistic regression and fuzzy logic approaches. Ecological Indicators, 98: 251–265.

    Article  Google Scholar 

  • Santisi, S., Gentile, G., Volta, A., Bonsignore, M., Mancini, G., Quatrini, P., et al., 2015. Isolation and characterization of oil-degrading bacteria from Bilge water. International Journal of Microbiology and Application, 17: 18.

    Google Scholar 

  • SEPAC, 2002. Analytical and Monitoring Methods of Water and Wastewater. 4th edition, China Environmental Science Press, Beijing, 41–46.

    Google Scholar 

  • Shahi, A., Aydin, S., and Ince, B., 2016. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Ecotoxicology and Environmental Safety, 125: 153–160.

    Article  Google Scholar 

  • Sekaran, G., Karthikeyan, S., Gupta, V. K., Boopathy, R., and Maharaja, P., 2013. Immobilization of Bacillus sp. in mesoporous activated carbon for degradation of sulphonated phenolic compound in wastewater. Materials Science & Engineering C, 33: 735–745.

    Article  Google Scholar 

  • Shetaia, Y. M. H., Khalik, W. A. A., Mohamed, T. M., Farahat, L. A., and ElMekawy, A., 2016. Potential biodegradation of crude petroleum oil by newly isolated halotolerant microbial strains from polluted Red Sea area. Marine Pollution Bulletin, 111: 435–442.

    Article  Google Scholar 

  • Simister, R. L., Antzis E. W., and White, H. K., 2015. Examining the diversity of microbes in a deep-sea coral community impacted by the deepwater horizon oil spill. Deep-Sea Research Part II, 96: 21a.

    Google Scholar 

  • Suja, F., Rahim, F., Taha, M. R., Hambali, N., Razali, M. R., Khalid, A., et al., 2014. Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations. International Biodeterioration & Biodegradation, 90: 115–122.

    Article  Google Scholar 

  • Tao, X., Lu, G., Liu, J., Li, T., and Yang, L., 2009. Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads. IJERPH, 6: 2470–2480.

    Article  Google Scholar 

  • Varjani, S. J., and Upasani, V. N., 2016. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresource Technology, 222: 195–201.

    Article  Google Scholar 

  • Vyrides, L., and Stuckey, D. C., 2017. Compatible solute addition to biological systems treating waste/wastewater to counteract osmotic and other environmental stresses: A review. Critical Reviews in Biotechnology, 37: 865–879.

    Article  Google Scholar 

  • Wang, P., Li, Z., Bai, J., Lang, Y., and Hu, H., 2016. Optimization of microalgal bead preparation with Scenedesmus obliquus for both nutrient removal and lipid production. Ecological Engineering, 92: 236–242.

    Article  Google Scholar 

  • Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73: 5261–5267.

    Article  Google Scholar 

  • Woodward, R. T., and Wui, Y. S., 2011. The economic value of wetland services: A meta-analysis. Ecological Economics, 37: 257–270.

    Article  Google Scholar 

  • Xue, J., Yu, Y., Bai, Y., Wang, L., and Wu, Y., 2015. Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: A review. Current Microbiology, 71: 220–228.

    Article  Google Scholar 

  • Yuste, L., Corbella, M. E., Turiégano, M. J., Karlson, U., Puyet, A., and Rojo, F., 2000. Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS Microbiology Ecology, 32: 69–75.

    Article  Google Scholar 

  • Zhang, D., Zhang, Y., Shen, F., Wang, J., Li, W., Li, E., et al., 2014. Removal of cadmium and lead from heavy metals loaded PVA—SA immobilized Lentinus edodes. Desalination and Water Treatment, 52: 4792–4801.

    Article  Google Scholar 

  • Zhao, Y., Zheng, Y., Tian, W., Bai, J., Feng, G., Guo, L., et al., 2016. Enrichment and immobilization of sulfide removal microbiota applied for environmental biological remediation of aquaculture area. Environmental Pollution, 214: 307–313.

    Article  Google Scholar 

  • Wang, Z., Xu, Y., Wang, H., Zhao, J., Gao, D., Li, F., et al., 2012. Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere, 22: 717–725.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFD0900805) and the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhou, T., Chen, X. et al. Enhanced Biodegradation of High-Salinity and Low-Temperature Crude-Oil Wastewater by Immobilized Crude-Oil Biodegrading Microbiota. J. Ocean Univ. China 21, 141–151 (2022). https://doi.org/10.1007/s11802-022-4907-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4907-4

Key words

Navigation