Skip to main content
Log in

Transcriptome Analysis of Crassostrea sikamea (♀)×Crassostrea gigas (♂) Hybrids Under and After Thermal Stress

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Crossbreeding is an effective approach to manage the genetic decline in aquaculture. One-way hybrids of Crassostrea sikamea (♀) and Crassostrea gigas (♂) have advantages in growth traits and adaptation to high temperature. Here, we used high-throughput sequencing to analyze the molecular processes in the hybrids under and after thermal stress. The hybrids were cultured in the seawater with an increasing temperature from 25 °C to 40 °C during 10 hours, which is regarded as the thermal stress stage. Then the temperature decreased from 40 °C to 25 °C within 2 h, which is regarded as the recovery stage. In this study, 1293 significant differentially expressed genes (DEGs) were obtained under thermal stress, of which 576 were upregulated and 717 were downregulated, and 740 significant differentially expressed genes (DEGs) were obtained in the recovery stage, of which the number of upregulated and downregulated genes was 409 and 331, respectively. The antigen processing and presentation, NOD-like, and NF-kappa B pathways were significantly enriched during the thermal stress stage. The MAPK and PPAR signaling pathways were significantly enriched during the recovery stage. The HSP70, HSP90, and CANX genes were strongly and rapidly upregulated in the control/thermal stress groups but were slightly less upregulated in the thermal stress/recovery group. These results indicate that the innate immune system or nonspecific immunity was deployed to protect interior tissues from thermal stress. In addition, 85% of the mutual DEGs were involved in bidirectional regulation (up/down or down/up) when the oysters were removed from the thermal stress to recover. This study provides preliminary insight into the molecular response of C. sikamea (♀) and C. gigas (♂) hybrids to thermal stress and provides a basis for future studies on temperature-adaptation and the possible expansion of hybrid breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abele, R., and Tampe, R., 2004. The ABCs of immunology: Structure and function of TAP, the transporter associated with antigen processing. Physiology, 19(4): 216–224.

    Article  Google Scholar 

  • Banks, M., McGoldrick, D., Borgeson, W., and Hedgecock, D., 1994. Gametic incompatibility and genetic divergence of Pacific and Kumamoto oysters, Crassostrea gigas and C. sikamea. Marine Biology, 121(1): 127–135.

    Article  Google Scholar 

  • Berghe, T. V., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., and Vandenabeele, P., 2014. Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 15(2): 135–147.

    Article  Google Scholar 

  • Buckley, B. A., Gracey, A. Y., and Somero, G. N., 2006. The cellular response to heat stress in the goby Gillichthys mirabilis: A cDNA microarray and protein-level analysis. Journal of Experimental Biology, 209(14): 2660–2677.

    Article  Google Scholar 

  • Chapman, R. W., Mancia, A., Beal, M., Veloso, A., Rathburn, C., Blair, A., et al., 2011. The transcriptomic responses of the eastern oyster, Crassostrea virginica, to environmental conditions. Molecular Ecology, 20(7): 1431–1449.

    Article  Google Scholar 

  • Clegg, J., Uhlinger, K., Jackson, S., Cherr, G., Rifkin, E., and Friedman, C., 1998. Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas. Molecular Marine Biology and Biotechnology, 7: 21–30.

    Google Scholar 

  • Craig, E. A., and Schlesinger, M. J., 1985. The heat shock response. Critical Reviews in Biochemistry, 18(3): 239–280.

    Article  Google Scholar 

  • Dondelinger, Y., Hulpiau, P., Saeys, Y., Bertrand, M. J., and Vandenabeele, P., 2016. An evolutionary perspective on the necroptotic pathway. Trends in Cell Biology, 26(10): 721–732.

    Article  Google Scholar 

  • Elston, R. A., Moore, J., and Abbott, C. L., 2012. Denman Island disease (causative agent Mikrocytos mackini) in a new host, Kumamoto oysters Crassostrea sikamea. Diseases of Aquatic Organisms, 102(1): 65–71.

    Article  Google Scholar 

  • Gjedrem, T., and Baranski, M., 2010. Selective breeding in aquaculture: An introduction. Springer Science & Business Media, 10: 20–21.

    Google Scholar 

  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al., 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644.

    Article  Google Scholar 

  • Guo, X., He, Y., Zhang, L., Lelong, C., and Jouaux, A., 2015. Immune and stress responses in oysters with insights on adaptation. Fish & Shellfish Iimmunology, 46(1): 107–119.

    Article  Google Scholar 

  • Hamdoun, A. M., Cheney, D. P., and Cherr, G. N., 2003. Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): Implications for thermal limits and induction of thermal tolerance. The Biological Bulletin, 205(2): 160–169.

    Article  Google Scholar 

  • Hedgecock, D., Li, G., Banks, M., and Kain, Z., 1999. Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea, Japan. Marine Biology, 133(1): 65–68.

    Article  Google Scholar 

  • Hilman, D., and Gat, U., 2011. The evolutionary history of YAP and the Hippo/YAP pathway. Molecular Biology and Evolution, 28(8): 2403–2417.

    Article  Google Scholar 

  • Hong, J. S., Sekino, M., and Sato, S., 2012. Molecular species diagnosis confirmed the occurrence of Kumamoto oyster Crassostrea sikamea in Korean waters. Fisheries Science, 78(2): 259–267.

    Article  Google Scholar 

  • Hossain, M. M., and Nakamoto, H., 2002. HtpG plays a role in cold acclimation in cyanobacteria. Current Microbiology, 44(4): 291–296.

    Article  Google Scholar 

  • Huo, Z., Wang, Z., Yan, X., and Yu, R., 2014. Hybridization between Crassostrea hongkongensis and Crassostrea ariakensis at different salinities. Journal of the World Aquaculture Society, 45(2): 226–232.

    Article  Google Scholar 

  • Jaeger, A. M., Makley, L. N., Gestwicki, J. E., and Thiele, D. J., 2014. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity. Journal of Biological Chemistry, 289(44): 30459–30469.

    Article  Google Scholar 

  • Kim, H. S., Lee, B. Y., Won, E. J., Han, J., Hwang, D. S., Park, H. G., et al., 2015. Identification of xenobiotic biodegradation and metabolism-related genes in the copepod Tigriopus japonicus whole transcriptome analysis. Marine Genomics, 24: 207–208.

    Article  Google Scholar 

  • Kim, Y. J., Lee, S. A., Myung, S. C., Kim, W., and Lee, C. S., 2012. Radicicol, an inhibitor of Hsp90, enhances TRAIL-induced apoptosis in human epithelial ovarian carcinoma cells by promoting activation of apoptosis-related proteins. Molecular and Cellular Biochemistry, 359(1–2): 33–43.

    Article  Google Scholar 

  • Kotas, M. E., and Medzhitov, R., 2015. Homeostasis, inflammation, and disease susceptibility. Cell, 160(5): 816–827.

    Article  Google Scholar 

  • Krause, M., Wild, M., Rosenzweig, B., and Hirsh, D., 1989. Wildtype and mutant actin genes in Caenorhabditis elegans. Journal of Molecular Biology, 208(3): 381–392.

    Article  Google Scholar 

  • Lang, R. P., Bayne, C. J., Camara, M. D., Cunningham, C., Jenny, M. J., and Langdon, C. J., 2009. Transcriptome profiling of selectively bred Pacific oyster Crassostrea gigas families that differ in tolerance of heat shock. Marine Biotechnology, 11(5): 650–668.

    Article  Google Scholar 

  • Lim, H. J., Kim, B. M., Hwang, I. J., Lee, J. S., Choi, I. Y., Kim, Y. J., et al., 2016. Thermal stress induces a distinct transcriptome profile in the Pacific oyster Crassostrea gigas. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 19: 62–70.

    Google Scholar 

  • Lindquist, S., 1986. The heat-shock response. Annual Review of Biochemistry, 55(1): 1151–1191.

    Article  Google Scholar 

  • Liu, D., Yan, B., Yang, J., Lei, W., and Wang, L., 2011. Mitochondrial pathway of apoptosis in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense exposed to cadmium. Aquatic Toxicology, 105(3–4): 394–402.

    Article  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4): 402–408.

    Article  Google Scholar 

  • Long, G. L., 1976. The stereospecific distribution and evolutionary significance of invertebrate lactate dehydrogenases. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 55(1): 77–83.

    Article  Google Scholar 

  • Meistertzheim, A. L., Tanguy, A., Moraga, D., and Thebault, M. T., 2007. Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. The FEBS Journal, 274(24): 6392–6402.

    Article  Google Scholar 

  • Meyer, M. R., Haas, E., Prossnitz, E. R., and Barton, M., 2009. Non-genomic regulation of vascular cell function and growth by estrogen. Molecular and Cellular Endocrinology, 308(1–2): 9–16.

    Article  Google Scholar 

  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B., 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5: 621.

    Article  Google Scholar 

  • Peng, J., Wei, P., Zhang, B., Zhao, Y., Zeng, D., Chen, X., et al., 2015. Gonadal transcriptomic analysis and differentially expressed genes in the testis and ovary of the Pacific white shrimp (Litopenaeus vannamei). BMC Genomics, 16(1): 1006.

    Article  Google Scholar 

  • Pickart, C. M., and Eddins, M. J., 2004. Ubiquitin: Structures, functions, mechanisms. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1695(1–3): 55–72.

    Article  Google Scholar 

  • Proestou, D. A., Vinyard, B. T., Corbett, R. J., Piesz, J., Allen, S. K., Small, J. M., et al., 2016. Performance of selectively-bred lines of eastern oyster, Crassostrea virginica, across eastern US estuaries. Aquaculture, 464: 17–27.

    Article  Google Scholar 

  • Shamseldin, A., Clegg, J. S., Friedman, C. S., Cherr, G. N., and Pillai, M., 1997. Induced thermotolerance in the Pacific oyster, Crassostrea gigas. Journal of Shellfish Research, 16(2): 487–491.

    Google Scholar 

  • Silke, J., and Vaux, D. L., 2001. Two kinds of BIR-containing protein-inhibitors of apoptosis, or required for mitosis. Journal of Cell Science, 114(10): 1821–1827.

    Article  Google Scholar 

  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., et al., 2012. Primer3 — New capabilities and interfaces. Nucleic Acids Research, 40(15): e115.

    Article  Google Scholar 

  • Vandenabeele, P., and Bertrand, M. J., 2012. The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nature Reviews Immunology, 12(12): 833–844.

    Article  Google Scholar 

  • Versteeg, S., Mogk, A., and Schumann, W., 1999. The Bacillus subtilis htpG gene is not involved in thermal stress management. Molecular and General Genetics MGG, 261(3): 582–588.

    Article  Google Scholar 

  • Wong, M. M., and Fish, E. N., 2003. Chemokines: Attractive mediators of the immune response. Seminars in Immunology, 15(1): 5–14.

    Article  Google Scholar 

  • Xu, H., Li, Q., Han, Z., Liu, S., Yu, H., and Kong, L., 2019. Fertilization, survival and growth of reciprocal crosses between two oysters, Crassostrea gigas and Crassostrea nippona. Aquaculture, 507: 91–96.

    Article  Google Scholar 

  • Yan, L., Li, Y., Wang, Z., Su, J., Yu, R., Yan, X., et al., 2018. Stress response to low temperature: Transcriptomic characterization in Crassostrea sikamea × Crassostrea angulata hybrids. Aquaculture Research, 49(10): 3374–3385.

    Article  Google Scholar 

  • Yan, L., Wang, Z., Su, J., Yan, X., and Yu, R., 2017. Determination of nutritive components and expression analysis of lipid metabolism related genes of hybrid of Kumamoto oyster (♀) and Portuguese oyster (♂). Periodical of Ocean University of China, 47: 53–60 (in Chinese with English abstract).

    Google Scholar 

  • Yang, C., and He, S., 2016. Heat shock protein 90 regulates necroptosis by modulating multiple signaling effectors. Cell Death & Disease, 7(3): e2126.

    Article  Google Scholar 

  • Yang, C., Gao, Q., Liu, C., Wang, L., Zhou, Z., Gong, C., et al., 2017. The transcriptional response of the Pacific oyster Crassostrea gigas against acute heat stress. Fish & Shellfish Immunology, 68: 132–143.

    Article  Google Scholar 

  • Yue, S., Wang, Z., Zhang, X., Fan, C., and Tang, L., 2021. The effect of high temperature on the immunoenzyme activity and heterosis of Pacific oyster and Kumamoto oyster and their hybrids. Periodical of Ocean University of China, in press (in Chinese with English abstract).

  • Zhang, L., Hou, R., Su, H., Hu, X., Wang, S., and Bao, Z., 2012. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock. PLoS One, 7(4): e35484.

    Article  Google Scholar 

  • Zhang, Y., Zhang, Y., Li, J., Wang, Z., Yan, X., and Yu, Z., 2017. Incomplete sterility of hybrids produced by Crassostrea hongkongensis female × Crassostrea gigas male crosses. Aquaculture Research, 48(3): 1351–1358.

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Natural Science Foundation of China (No. 31172403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Fan, C., Zhang, X. et al. Transcriptome Analysis of Crassostrea sikamea (♀)×Crassostrea gigas (♂) Hybrids Under and After Thermal Stress. J. Ocean Univ. China 21, 213–224 (2022). https://doi.org/10.1007/s11802-022-4829-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4829-1

Key words

Navigation