Skip to main content
Log in

Transcriptome-Wide Identification and Validation of Reference Genes in Black Rockfish (Sebastes schlegelii)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The quantitative real-time reverse transcription PCR (qRT-PCR) is a widely used technique to analyze gene expression levels. Selecting a suitable reference gene is a crucial step to obtain an accurate result in qRT-PCR. However, most previous studies on fishes adopted reference genes that were commonly used in mammals without validation. In this study, we utilized 89 transcriptome datasets covering early developmental stages and different adult tissues, and carried out transcriptome-wide identification and validation of reference genes in Sebastes schlegelii. Finally, 121 candidate reference genes were identified based on four criteria. Eight candidates (METAP2, BTF3L4, EIF5A1, TCTP, UBC, PAIRB, RAB10, and DLD) and four commonly used reference genes in mammals (TUBA, ACTB, GAPDH, RPL17) were selected for validation via qRT-PCR and four statistical analysis methods (delta-Ct, Best-Keeper, geNorm, and NormFinder). The results indicated that when the black rockfish are cultured in a general condition, the eight candidate reference genes are more stable than traditional reference genes in mammals, and RAB10, EIF5A1, PAIRB and BTF3L4 are the best reference genes in rockfish. This is the first study to conduct transcriptome-wide identification and validation of reference genes for quantitative RT-PCR in the black rockfish, and lay an important foundation for gene expression analysis in teleost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

METAP2:

Methionine aminopeptidase 2

BTF3L4:

Transcription factor BTF3 homolog 4

EIF5A1:

Eukaryotic translation initiation factor 5A-1

TCTP:

Translationally-controlled tumor protein

UBC:

Ubiquitin C

PAIRB:

Plasminogen activator inhibitor 1 RNA-binding protein

RAB10:

Ras-related protein Rab-10

DLD:

Dihydrolipoamide dehydrogenase

TUBA:

α-Tubulin

RPL17:

Ribosomal protein L17

ACTB:

β-actin

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

qRT-PCR:

Quantitative reverse transcription PCR

TPM:

Transcripts per million

References

  • Andersen, C. L., Jensen, J. L., and Ørntoft, T. F., 2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15): 5245–5250.

    Article  Google Scholar 

  • Carlyle, W. C., Cynthia, A. T., Jonathan, R. V., Kenneth, M. M., David, C. H., and Jay, N. C., 1996. Changes in β-actin mRNA expression in remodeling canine myocardium. Journal of Molecular and Cellular Cardiology, 28(1): 53–63.

    Article  Google Scholar 

  • Chen, D., Pan, X., Peng, X., Mary, A. F., and Zhang, B., 2011. Evaluation and identification of reliable reference genes for pharmacogenomics, toxicogenomics, and small RNA expression analysis. Journal of Cellular Physiology, 226(10): 2469–2477.

    Article  Google Scholar 

  • de Jonge, H. J., Fehrmann, R. S., de Bont, E. S., Hofstra, R. M., Gerbens, F., Kamps, W. A., de Vries, E. G., van der Zee, A. G., te Meerman, G. J., and ter Elst, A., 2007. Evidence based selection of housekeeping genes. PLoS One, 2(9): e898.

    Article  Google Scholar 

  • Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G., and Zumla, A., 2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 37(1): 112–119.

    Article  Google Scholar 

  • Du, Y., Zhang, L., Xu, F., Huang, B., Zhang, G., and Li, L., 2013. Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish & Shellfish Immunology, 34(3): 939–945.

    Article  Google Scholar 

  • Eisenberg, E., and Levanon, E. Y., 2013. Human housekeeping genes, revisited. TRENDS in Genetics, 29(10): 569–574.

    Article  Google Scholar 

  • Fernandes, J. M., Mommens, M., Hagen, O., Babiak, I., and Solberg, C., 2008. Selection of suitable reference genes for realtime PCR studies of Atlantic halibut development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 150(1): 23–32.

    Article  Google Scholar 

  • Fu, Y., He, W., Wang, L., and Wei, Y., 2015. Selection of appropriate reference genes for quantitative real-time PCR in Oxytropis ochrocephala Bunge using transcriptome datasets under abiotic stress treatments. Frontiers in Plant Science, 6: 475.

    Article  Google Scholar 

  • Gao, D., Kong, F., Sun, P., Bi, G., and Mao, Y., 2018. Transcriptome-wide identification of optimal reference genes for expression analysis of Pyropia yezoensis responses to abiotic stress. BMC Genomics, 19(1): 251.

    Article  Google Scholar 

  • Ghani, M., Sato, C., and Rogaeva, E., 2013. Segmental duplications in genome-wide significant loci and housekeeping genes; Warning for GAPDH and ACTB. Neurobiology of Aging, 34(6): 1710.e1–1710.e4.

    Article  Google Scholar 

  • He, Y., Chang, Y., Bao, L., Yu, M., Li, R., Niu, J., Fan, G., Song, W., Seim, I., and Qin, Y., 2019. A chromosome-level genome of black rockfish, Sebastes schlegelii, provides insights into the evolution of live birth. Molecular Ecology Resources, 19: 1309–1321.

    Article  Google Scholar 

  • Huggett, J. F., Dheda, K., Bustin, S. A., and Zumla, A., 2005. Realtime RT-PCR normalisation; strategies and considerations. Genes and Immunity, 6(4): 279.

    Article  Google Scholar 

  • Jorgensen, S. M., Kleveland, E. J., Grimholt, U., and Gjoen, T., 2006. Validation of reference genes for real-time polymerase chain reaction studies in Atlantic salmon. Marine Biotechnology, 8(4): 398–408.

    Article  Google Scholar 

  • Kim, H. S., and Cho, S. H., 2019. Dietary inclusion effect of feed ingredients showing high feeding attractiveness to rockfish (Sebastes schlegeli Hilgendorf 1880) on the growth performance, feed utilization, condition factor and whole body composition of fish (II). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 231(2019): 66–73.

    Article  Google Scholar 

  • Kugapreethan, R., Umasuthan, N., Wan, Q., Thulasitha, W. S., Kim, C., and Lee, J., 2017. Comparative analysis of two thioredoxin-like genes in black rockfish Sebastes schlegelii and their possible involvement in redox homeostasis and innate immune responses. Developmental & Comparative Immunology, 67: 43–56.

    Article  Google Scholar 

  • Li, B., and Dewey, C. N., 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1): 323.

    Article  Google Scholar 

  • Li, Y., Zhang, L., Li, R., Zhang, M., Li, Y., Wang, H., Wang, S., and Bao, Z., 2019. Systematic identification and validation of the reference genes from 60 RNA-Seq libraries in the scallop Mizuhopecten yessoensis. BMC Genomics, 20(1): 288.

    Article  Google Scholar 

  • Ma, L., Wang, W., Liu, C., Yu, H., Wang, Z., Wang, X., Qi, J., and Zhang, Q., 2013. Selection of reference genes for reverse transcription quantitative real-time PCR normalization in black rockfish (Sebastes schlegeli). Marine Genomics, 11: 67–73.

    Article  Google Scholar 

  • Lin, F., Jiang, L., Liu, Y., Lv, Y., Dai, H., and Zhao, H., 2014. Genome-wide identification of housekeeping genes in maize. Plant Molecular Biology, 86(4–5): 543–554.

    Article  Google Scholar 

  • Liu, C., Xin, N., Zhai, Y., Jiang, L., Zhai, M., Zhang, Q., and Qi, J., 2014. Reference gene selection for quantitative real-time RT-PCR normalization in the half-smooth tongue sole (Cynoglossus semilaevis) at different developmental stages, in various tissue types and on exposure to chemicals. PLoS One, 9(3): e91715.

    Article  Google Scholar 

  • Liu, J., Huang, S., Niu, X., Chen, D., Chen, Q., Tian, L., Xiao, F., and Liu, Y., 2018. Genome-wide identification and validation of new reference genes for transcript normalization in developmental and post-harvested fruits of Actinidia chinensis. Gene, 645: 1–6.

    Article  Google Scholar 

  • Long, X., Wang, J., Ouellet, T., Rocheleau, H., Wei, Y., Pu, Z., Jiang, T., Lan, X., and Zheng, Y., 2010. Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Molecular Biology, 74(3): 307–311.

    Article  Google Scholar 

  • Ma, L., Wang, W., Yang, X., Jiang, J., Song, H., Jiang, H., Zhang, Q., and Qi, J., 2014. Characterization of the Dmrt1 gene in the black rockfish Sebastes schlegeli revealed a remarkable sex-dimorphic expression. Fish Physiology and Biochemistry, 40(4): 1263–1274.

    Google Scholar 

  • Mosley, Y. C., and HogenEsch, H., 2017. Selection of a suitable reference gene for quantitative gene expression in mouse lymph nodes after vaccination. BMC Research Notes, 10(1): 689.

    Article  Google Scholar 

  • Niu, G., Yang, Y., Zhang, Y., Hua, C., Wang, Z., Tang, Z., and Li, K., 2016. Identifying suitable reference genes for gene expression analysis in developing skeletal muscle in pigs. PeerJ, 4: e2428.

    Article  Google Scholar 

  • Olsvik, P. A., Lie, K. K., Jordal, A. E., Nilsen, T. O., and Hordvik, I., 2005. Evaluation of potential reference genes in realtime RT-PCR studies of Atlantic salmon. BMC Molecular Biology, 6(1): 21.

    Article  Google Scholar 

  • She, X., Rohl, C. A., Castle, J. C., Kulkarni, A. V., Johnson, J. M., and Chen, R., 2009. Definition, conservation and epigenetics of housekeeping and tissue-enriched genes. BMC Genomics, 10(1): 269.

    Article  Google Scholar 

  • Silver, N., Best, S., Jiang, J., and Thein, S. L., 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7(1): 33.

    Article  Google Scholar 

  • Sun, Y., Li, Y., Luo, D., and Liao, D. J., 2012. Pseudogenes as weaknesses of ACTB (Actb) and GAPDH (Gapdh) used as reference genes in reverse transcription and polymerase chain reactions. PLoS One, 7(8): e41659.

    Article  Google Scholar 

  • Tang, R., Dodd, A., Lai, D., McNabb, W. C., and Love, D. R., 2007. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochimica et Biophysica Sinica, 39(5): 384–390.

    Article  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3 (7): research0034.1.

  • Velculescu, V. E., Madden, S. L., Zhang, L., Lash, A. E., Yu, J., Rago, C., Lal, A., Wang, C. J., Beaudry, G. A., and Ciriello, K. M., 1999. Analysis of human transcriptomes. Nature Genetics, 23(4): 387.

    Article  Google Scholar 

  • Wang, M., Li, Q., Xin, H., Chen, X., Zhu, X., and Li, X., 2017. Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses. PLoS One, 12(4): e0175863.

    Article  Google Scholar 

  • Yang, H., Liu, J., Huang, S., Guo, T., Deng, L., and Hua, W., 2014. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica napus L. Gene, 538(1): 113–122.

    Article  Google Scholar 

  • Zeng, J., Liu, S., Zhao, Y., Tan, X., Aljohi, H. A., Liu, W., and Hu, S., 2016. Identification and analysis of house-keeping and tissue-specific genes based on RNA-seq data sets across 15 mouse tissues. Gene, 576(1): 560–570.

    Article  Google Scholar 

  • Zhao, X., Yang, H., Chen, M., Song, X., Yu, C., Zhao, Y., and Wu, Y., 2018. Reference gene selection for quantitative realtime PCR of mycelia from Lentinula edodes under high-temperature stress. BioMed Research International, DOI: https://doi.org/10.1155/2018/1670328.

  • Zhu, J., He, F., Song, S., Wang, J., and Yu, J., 2008. How many human genes can be defined as housekeeping with current expression data? BMC Genomics, 9(1): 172.

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Key R&D Program of China (No. 2018YFD0900101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Song, W., Wang, M. et al. Transcriptome-Wide Identification and Validation of Reference Genes in Black Rockfish (Sebastes schlegelii). J. Ocean Univ. China 20, 654–660 (2021). https://doi.org/10.1007/s11802-021-4588-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4588-4

Key words

Navigation