Skip to main content
Log in

Reference genes for qPCR expression in black tiger shrimp, Penaeus monodon

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Gene expression profiling via qPCR is an essential tool for unraveling the intricate molecular mechanisms underlying growth and development. Identifying and validating the most appropriate reference genes is essential for qPCR experiments. Nevertheless, there exists a deficiency in a thorough assessment of reference genes concerning the expression of the genes in the research in the context of the growth and development of the Black Tiger Shrimp, P. monodon. This popular marine crustacean is extensively raised for human consumption. In this study, we assessed the expression stability of seven reference genes (ACTB, 18S, EF-1α, AK, PK, cox1, and CLTC) in adult tissues (hepatopancreas, gills, and stomach) of small and large polymorphs of P. monodon.

Methods and results

The stability of gene expressions was assessed utilizing NormFinder, BestKeeper, and geNorm, and a comprehensive ranking of these genes was conducted through the online tool RefFinder. In the overall ranking, 18S and CLTC emerged as the most stable genes in the hepatopancreas and stomach, while CLTC and AK exhibited significant statistical reliability in the gills of adult P. monodon. The validation of these identified stable genes was carried out using a growth-associated gene, insr-1.

Conclusion

The results indicated that 18S and CLTC stand out as the most versatile reference genes for conducting qPCR analysis focused on the growth of P. monodon. This study represents the first comprehensive exploration that identifies and assesses reference genes for qPCR analysis in P. monodon, providing valuable tools for research involving similar crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. Abbas EM, Ali FS, Desouky MG, Ashour M, El-Shafei A, Maaty MM, Sharawy ZZ (2021) Novel comprehensive molecular and ecological study introducing coastal mud shrimp (Solenocera crassicornis) recorded at the Gulf of Suez, Egypt. J Mar Sci Eng 9:9. https://doi.org/10.3390/jmse9010009

    Article  Google Scholar 

  2. Abdelrhman AM, Ashour M, Al-Zahaby MA, Sharawy ZZ, Nazmi H, Zaki MAA, Ahmed NH, Ahmed SR, El-Haroun E, Van Doan H et al (2022) Effect of polysaccharides derived from brown macroalgae sargassum dentifolium on growth performance, serum biochemical, digestive histology and enzyme activity of hybrid red tilapia. Aquac Rep 25:101212. https://doi.org/10.1016/j.aqrep.2022.101212

    Article  Google Scholar 

  3. Goda A, Saad A, Hanafy M, Sharawy Z, El-Haroun E (2018) Dietary effects of azolla pinnata combined with exogenous digestive enzyme (DigestinTM) on growth and nutrients utilization of freshwater prawn, Macrobrachium rosenbergii (de Man 1879). J Oceanol Limnol 36:1434–1441. https://doi.org/10.1007/s00343-018-7019-7

    Article  CAS  Google Scholar 

  4. Sharawy ZZ, Abbas EM, Abdelkhalek NK, Ashry OA, Abd El-Fattah LS, El-Sawy MA, Helal MF, El-Haroun E (2022) Effect of organic carbon source and stocking densities on growth indices, water microflora, and immune-related genes expression of Litopenaeus vannamei larvae in intensive culture. Aquaculture 546:737397. https://doi.org/10.1016/j.aquaculture.2021.737397

    Article  CAS  Google Scholar 

  5. Chen X, Chen X, Tan Q, He Y, Wang Z, Zhou G, Liu J (2022) Selection of potential reference genes for RT-QPCR in the plant pathogenic fungus Colletotrichum fructicola. Front Microbiol 13:982748. https://doi.org/10.3389/fmicb.2022.982748

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lian C, Zhang B, Yang J, Lan JX, Yang H, Guo K, Li J, Chen S (2022) Validation of suitable reference genes by various algorithms for gene expression analysis in Isodon rubescens under different abiotic stresses. Sci Rep 12:19599. https://doi.org/10.1038/s41598-022-22397-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang Y, Zhang Y, Liu Q, Tong H, Zhang T, Gu C, Liu L, Huang S, Yuan H (2021) Selection and validation of appropriate reference genes for RT-QPCR analysis of flowering stages and different genotypes of Iris germanica L. Sci Rep 11:9901. https://doi.org/10.1038/s41598-021-89100-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hounkpe BW, Chenou F, de Lima F, de Paula EV (2021) HRT atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-Seq datasets. Nucleic Acids Res 49:D947–D955. https://doi.org/10.1093/nar/gkaa609

    Article  CAS  PubMed  Google Scholar 

  9. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  11. Subramoniam T (2016) Sexual Biology and Reproduction in Crustaceans

  12. Yang G, Qin Z, Lu Z, Liang R, Zhao L, Pan G, Lin L, Zhang K (2022) Comparative transcriptomics of gonads reveals the molecular mechanisms underlying gonadal development in giant freshwater prawns (Macrobrachium rosenbergii). J Mar Sci Eng 10:737. https://doi.org/10.3390/jmse10060737

    Article  Google Scholar 

  13. Zhu D, Feng T, Mo N, Han R, Lu W, Shao S, Cui Z (2022) New insights for the regulatory feedback loop between type 1 crustacean female sex hormone (CFSH-1) and insulin-like androgenic gland hormone (IAG) in the Chinese Mitten Crab (Eriocheir sinensis). Front Physiol 13:1054773. https://doi.org/10.3389/fphys.2022.1054773

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cottin D, Shillito B, Chertemps T, Thatje S, Léger N, Ravaux J (2010) Comparison of heat-shock responses between the hydrothermal vent shrimp Rimicaris exoculata and the related coastal shrimp Palaemonetes varians. J Exp Mar Biol Ecol 393:9–16. https://doi.org/10.1016/j.jembe.2010.06.008

    Article  Google Scholar 

  15. Barman HK, Patra SK, Das V, Mohapatra SD, Jayasankar P, Mohapatra C, Mohanta R, Panda RP, Rath SN (2012) Identification and characterization of differentially expressed transcripts in the gills of freshwater prawn (Macrobrachium rosenbergii) under salt stress. Sci World J 2012:1–11. https://doi.org/10.1100/2012/149361

    Article  CAS  Google Scholar 

  16. Priyadarshi H, Das R, Pavan-Kumar A, Gireesh-Babu P, Javed H, Kumar S, Marappan M, Somdutt, Krishna G, Chaudhari A (2017) Silencing and augmentation of IAG hormone transcripts in adult Macrobrachium rosenbergii males affects morphotype transformation. J Exp Biol 220:4101–4108. https://doi.org/10.1242/jeb.163410

    Article  PubMed  Google Scholar 

  17. Dhar AK, Bowers RM, Licon KS, Veazey G, Read B (2009) Validation of reference genes for quantitative measurement of immune gene expression in shrimp. Mol Immunol 46:1688–1695. https://doi.org/10.1016/j.molimm.2009.02.020

    Article  CAS  PubMed  Google Scholar 

  18. Leelatanawit R, Klanchui A, Uawisetwathana U, Karoonuthaisiri N (2012) Validation of reference genes for real-time PCR of reproductive system in the black tiger shrimp. PLoS ONE 7:e52677. https://doi.org/10.1371/journal.pone.0052677

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Supungul P, Klinbunga S, Pichyangkura R, Jitrapakdee S, Hirono I, Aoki T, Tassanakajon A (2002) Identification of immune-related genes in hemocytes of black tiger shrimp (Penaeus monodon). Mar Biotechnol 4:487–494. https://doi.org/10.1007/s10126-002-0043-8

    Article  CAS  Google Scholar 

  20. de Rebouças EL, do Costa JJN, Passos MJ, de Passos JRS, van den Hurk R, Silva JRV (2013) Real time PCR and importance of housekeepings genes for normalization and quantification of MRNA expression in different tissues. Braz Arch Biol Technol 56:143–154. https://doi.org/10.1590/S1516-89132013000100019

    Article  CAS  Google Scholar 

  21. Tangprasittipap A, Tiensuwan M, Withyachumnarnkul B (2010) Characterization of candidate genes involved in growth of black tiger shrimp Penaeus monodon. Aquaculture 307:150–156. https://doi.org/10.1016/j.aquaculture.2010.07.008

    Article  CAS  Google Scholar 

  22. Vanichviriyakit R, Kruevaisayawan H, Weerachatyanukul W, Tawipreeda P, Withyachumnarnkul B, Pratoomchat B, Chavadej J, Sobhon P (2004) Molecular modification of Penaeus monodon sperm in female thelycum and its consequent responses. Mol Reprod Dev 69:356–363. https://doi.org/10.1002/mrd.20138

    Article  CAS  PubMed  Google Scholar 

  23. Yu Q, Xie J, Huang M, Chen C, Qian D, Qin JG, Chen L, Jia Y, Li E (2020) Growth and health responses to a long-term PH stress in pacific white shrimp Litopenaeus vannamei. Aquac Rep 16:100280. https://doi.org/10.1016/j.aqrep.2020.100280

    Article  Google Scholar 

  24. Mente E, Gannon AT, Nikouli E, Hammer H, Kormas KA (2016) Gut microbial communities associated with the molting stages of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 463:181–188. https://doi.org/10.1016/j.aquaculture.2016.05.045

    Article  Google Scholar 

  25. Mehennaoui K, Legay S, Serchi T, Guérold F, Giamberini L, Gutleb AC, Cambier S (2018) Identification of reference genes for RT-QPCR data normalization in gammarus fossarum (Crustacea amphipoda). Sci Rep 8:15225. https://doi.org/10.1038/s41598-018-33561-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM (2011) β-actin specifically controls cell growth, migration, and the g-actin pool. Mol Biol Cell 22:4047–4058. https://doi.org/10.1091/mbc.E11-06-0582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tondeleir D, Lambrechts A, Müller M, Jonckheere V, Doll T, Vandamme D, Bakkali K, Waterschoot D, Lemaistre M, Debeir O et al (2012) Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics 11:255–271. https://doi.org/10.1074/mcp.M111.015099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ito K, Honda T, Suzuki T, Miyoshi T, Murakami R, Yao M, Uchiumi T (2014) Molecular insights into the interaction of the ribosomal stalk protein with elongation factor 1α. Nucleic Acids Res 42:14042–14052. https://doi.org/10.1093/nar/gku1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533

    Article  CAS  PubMed  Google Scholar 

  30. Cail RC, Shirazinejad CR, Drubin DG (2022) Induced nanoscale membrane curvature bypasses the essential endocytic function of clathrin. J Cell Biol 221:e202109013. https://doi.org/10.1083/jcb.202109013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen X, Chen S, Yu D (2020) Protein kinase function of pyruvate kinase M2 and cancer. Cancer Cell Int 20:523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yao CL, Ji PF, Kong P, Wang ZY, Xiang JH (2009) Arginine kinase from litopenaeus vannamei: cloning, expression and catalytic properties. Fish Shellfish Immunol 26:553–558. https://doi.org/10.1016/j.fsi.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  33. Pereira C (2014) Arginine kinase: a potential pharmacological target in trypanosomiasis. Infect Disord Drug Targets 14:30–36. https://doi.org/10.2174/1871526514666140713144103

    Article  CAS  PubMed  Google Scholar 

  34. Hang R, Xu Y, Wang X, Hu H, Flynn N, You C, Chen X (2023) Arabidopsis HOT3/EIF5B1 constrains RRNA RNAi by facilitating 18S RRNA maturation. Proc Natl Acad Sci USA 120:e2301081120. https://doi.org/10.1073/pnas.2301081120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Hüttemann M (2017) Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxid Med Cell Longev 2017:1–19

    Article  Google Scholar 

  36. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  37. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. https://doi.org/10.1023/B:BILE.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  38. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) MiRDeepFinder: a MiRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84. https://doi.org/10.1007/s11103-012-9885-2

    Article  CAS  Google Scholar 

  39. Herran B, Bertaux J, Grève P (2018) Divergent evolution and clade-specific duplications of the insulin-like receptor in malacostracan crustaceans. Gen Comp Endocrinol 268:34–39. https://doi.org/10.1016/j.ygcen.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  40. Posiri P, Kondo H, Hirono I, Panyim S, Ongvarrasopone C (2015) Successful yellow head virus infection of Penaeus monodon requires clathrin heavy chain. Aquaculture 435:480–487. https://doi.org/10.1016/j.aquaculture.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  41. Valasek MA, Repa JJ (2005) The power of real-time PCR. Am J Physiol 29:151–159. https://doi.org/10.1152/advan.00019.2005

    Article  Google Scholar 

  42. Bai H, Qiao H, Li F, Fu H, Sun S, Zhang W, Jin S, Gong Y, Jiang S, Xiong Y (2015) Molecular characterization and developmental expression of vitellogenin in the oriental river prawn Macrobrachium nipponense and the effects of RNA interference and eyestalk ablation on ovarian maturation. Gene 562:22–31. https://doi.org/10.1016/j.gene.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  43. Nestorov J, Matić G, Elaković I, Tanić N (2013) Gene expression studies: how to obtain accurate and reliable data by quantitative real-time RT PCR. J Med Biochem 32:325–338. https://doi.org/10.2478/jomb-2014-0001

    Article  CAS  Google Scholar 

  44. Bhuva DD, Cursons J, Davis MJ (2020) Stable gene expression for normalisation and single-sample scoring. Nucleic Acids Res 48(19):e113–e113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang H, Qian Z, Lu W, Ding H, Yu H, Wang H, Li J (2015) Identification and characterization of reference genes for normalizing expression data from red swamp crawfish Procambarus clarkii. Int J Mol Sci 16:21591–21605. https://doi.org/10.3390/ijms160921591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaramillo ML, Ammar D, Quispe RL, Guzman F, Margis R, Nazari EM, Müller YMR (2017) Identification and evaluation of reference genes for expression studies by RT-QPCR during embryonic development of the emerging model organism Macrobrachium olfersii. Gene 598:97–106. https://doi.org/10.1016/j.gene.2016.11.001

    Article  CAS  PubMed  Google Scholar 

  47. Hu Y, Fu H, Qiao H, Sun S, Zhang W, Jin S, Wu Y (2018) Validation and evaluation of reference genes for quantitative real-time PCR in Macrobrachium nipponense. Int J Mol Sci 19(8):2258

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang MF, Liu Q, Jia GX (2016) Reference gene selection for gene expression studies in lily using quantitative real-time PCR. Genet Mol Res 15:15027982. https://doi.org/10.4238/gmr.15027982

    Article  CAS  Google Scholar 

  49. Hao X, Horvath DP, Chao WS, Yang Y, Wang X, Xiao B (2014) Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci 15(12):22155–22172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo H, Chen S, Wan H, Chen F, Gu C, Liu Z (2010) Candidate reference genes for gene expression studies in water lily. Anal Biochem 404(1):100–102

    Article  CAS  PubMed  Google Scholar 

  51. Horňáková D, Matoušková P, Kindl J, Valterová I, Pichová I (2010) Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal Biochem 397:118–120. https://doi.org/10.1016/j.ab.2009.09.019

    Article  CAS  PubMed  Google Scholar 

  52. Lu Y, Yuan M, Gao X, Kang T, Zhan S, Wan H, Li J (2013) Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE 8:e68059. https://doi.org/10.1371/journal.pone.0068059

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29:332–337

    Article  CAS  PubMed  Google Scholar 

  54. Claeys I, Simonet G, Poels J, Van Loy T, Vercammen L, De Loof A, Vanden Broeck J (2002) Insulin-related peptides and their conserved signal transduction pathway. Peptides 23:807–816

    Article  CAS  PubMed  Google Scholar 

  55. Sharabi O, Manor R, Weil S, Aflalo ED, Lezer Y, Levy T, Aizen J, Ventura T, Mather PB, Khalaila I et al (2016) Identification and characterization of an insulin-like receptor involved in crustacean reproduction. Endocrinology 157:928–941. https://doi.org/10.1210/en.2015-1391

    Article  CAS  PubMed  Google Scholar 

  56. Nagao H, Jayavelu AK, Cai W, Pan H, Dreyfuss JM, Batista TM, Brandão BB, Mann M, Kahn CR (2023) Unique ligand and kinase-independent roles of the insulin receptor in regulation of cell cycle, senescence and apoptosis. Nat Commun 14:57. https://doi.org/10.1038/s41467-022-35693-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mykles DL (2021) Signaling pathways that regulate the crustacean molting gland. Front Endocrinol (Lausanne) 12:674711

    Article  Google Scholar 

  58. Trapp M, Valle SC, Pöppl AG, Chittó ALF, Kucharski LC, Da Silva RSM (2018) Insulin-like receptors and carbohydrate metabolism in gills of the euryhaline crab neohelice granulata: effects of osmotic stress. Gen Comp Endocrinol 262:81–89. https://doi.org/10.1016/j.ygcen.2018.03.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author, Preety Sweta Hembrom acknowledges Rajiv Gandhi National Fellowship (RGNF) for providing fellowship. The Authors acknowledge research funding from the Central University of Kerala for this Project.

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T.G. and P.S.H.; Project administration: T.G.; Supervision: T.G.; Resources: P.S.H., N.M., and B.M.; Methodology: P.S.H., M.D., and A.B.; Formal Analysis: P.S.H and N.R.; Visualization: P.S.H and G.B.; Writing—original draft: P.S.H.; Writing—review & editing: T.G., M.D., and G.B. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tony Grace.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 5560 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hembrom, P.S., Deepthi, M., Biswas, G. et al. Reference genes for qPCR expression in black tiger shrimp, Penaeus monodon. Mol Biol Rep 51, 422 (2024). https://doi.org/10.1007/s11033-024-09409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09409-5

Keywords

Navigation