Skip to main content

Advertisement

Log in

Growth and Distribution of Amphioctopus fangsiao (d’Orbigny, 1839–1841) in Haizhou Bay, Yellow Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Octopus fisheries have prospered in many areas of the world ocean over the last six decades. Despite degradation and overexploitation of Chinese coastal ecosystems, octopus has become a stable Chinese domestic fishery species. Among the octopus species in the Bohai and Yellow, East and South China Seas, Amphioctopus fangsiao (d’Orbigny [in Férussac & d’Orbigny], 1839–1841) plays an increasingly important role both economically and ecologically. However, no systematic research has been conducted on its biology and population dynamics in the China Seas. In this study, we characterized the growth and distribution of A. fangsiao in Haizhou Bay, Yellow Sea based on four years of trawl survey data. As the results, A. fangsiao is characterized by allometric growth and an overall sex ratio of 0.97 with a slight male bias. Small octopus can be observed through a whole year, suggesting that A. fangsiao may have an extended or continuous spawning season. A. fangsiao may migrate short distances along with seasonal changes and coastal currents, considering they overwinter in the offshore water and spawn in the inshore water. In addition to fishing pressure, annual variations in the population structure and biomass appeared to be influenced by ambient water temperature. These results provide basic biological information for a better understanding of the population dynamics and the ecological importance of A. fangsiao.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizawa, Y., 1999. Consideration of the methods for estimating the age-composition from the length frequency data with MS-Excel. Bulletin of the Japanese Society of Fisheries Oceanography, 63: 205–214.

    Google Scholar 

  • Anderson, R. O., and Gutreuter, S. J., 1983. Length, weight, and associated structural indices. Fisheries techniques. American Fisheries Society, Bethesda, EE, UU, 283–300.

    Google Scholar 

  • Angeles-Gonzalez, L. E., Calva, R., Santos-Valencia, J., Avila-Poveda, O. H., Olivares, A., Diaz, F., and Rosas, C., 2017. Temperature modulates spatio-temporal variability of the functional reproductive maturation of Octopus maya (Cephalopoda) on the shelf of the Yucatan Peninsula, Mexico. Journal of Molluscan Studies, 83 (3): 280–288.

    Article  Google Scholar 

  • Dong, G., 2014. The basic biological studies on the artificial reproduction of Octopus ocellatus. PhD thesis, Ocean University of China.

  • Doubleday, Z. A., Prowse, T. A., Arkhipkin, A., Pierce, G. J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., Sauer, W., and Gillanders, B. M., 2016. Global proliferation of cephalopods. Current Biology, 26 (10): 406–407.

    Article  Google Scholar 

  • FAO, 2012. The state of world fisheries and aquaculture. Opportunities and challenges. Food and Agriculture Organization of the United Nations, Rome, 230pp.

    Google Scholar 

  • Forsythe, J. W., and Hanlon, R. T., 1988. Effect of temperature on laboratory growth, reproduction and life span of Octopus bimaculoides. Marine Biology, 98 (3): 369–379.

    Article  Google Scholar 

  • Forsythe, J. W., and van Heukelem, W. F., 1987. Growth. In: Cephalopod Life Cycles, Vol. II. Comparative Reviews. Boyle, P. R., ed., Academic Press, London, 135–156.

    Google Scholar 

  • Froese, R., 2006. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. Journal of Applied Ichthyology, 22 (4): 241–253.

    Article  Google Scholar 

  • Garofalo, G, Ceriola, L., Gristina, M., Fiorentino, F., and Pace, R., 2010. Nurseries, spawning grounds and recruitment of Octopus vulgaris in the Strait of Sicily, central Mediterranean Sea. ICES Journal of Marine Science, 67 (7): 1363–1371.

    Article  Google Scholar 

  • Guerra, F., 1981. Structural aspects of stochastic mechanics and stochastic field theory. Physics Reports, 77 (3): 263–312.

    Article  Google Scholar 

  • Huang M. Z., 2004. Study on feeding habits and nutrient level of four cephalopod species from Taiwan Strait and its adjacent areas. Journal of Oceanography in Taiwan Strait, 23 (3): 331–340 (in Chinese with English abstract).

    Google Scholar 

  • Katsanevakis, S., and Verriopoulos, G., 2006. Modelling the effect of temperature on hatching and settlement patterns of meroplanktonic organisms: The case of octopus. Scientia Marina, 70 (4): 699–708.

    Article  Google Scholar 

  • Leporati, S. C., Pecl, G. T., and Semmens, J. M., 2007. Cephalopod hatchling growth: The effects of initial size and seasonal temperatures. Marine Biology, 151 (4): 1375–1383.

    Article  Google Scholar 

  • López-Peraza, D. J., Hernández-Rodríguez, M., Barón-Sevilla, B., and Bückle-Ramirez, L. F., 2013. Histological analysis of the reproductive system and gonad maturity of Octopus rubescens. International Journal of Morphology, 31 (4): 1459–1469.

    Article  Google Scholar 

  • Lü, Z. M., Li, H., Wu, C. W., Fan, Z. J., and Zhang, J. S., 2010. Genetic variation of Octopus ocellatus populations in China’s coastal waters based on the COI gene analysis. Acta Oceanologica Sinica, 32 (1): 130–138.

    Google Scholar 

  • Mangold, K., 1983. Octopus vulgaris. Cephalopod Life Cycles, 1: 335–364.

    Google Scholar 

  • Otero, J., González, Á. F., Sieiro, M. P., and Guerra, Á., 2007. Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fisheries Research, 85 (1): 122–129.

    Article  Google Scholar 

  • Pang, Y., Tian, Y., Fu, C., Wang, B., Li, J., Ren, Y., and Wan, R., 2018. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fisheries Research, 208: 22–33.

    Article  Google Scholar 

  • Pang, Z., Xu, B., Zan, X., and Ren, Y., 2015. Shrimp community structure and its relationships with environmental factors in Haizhou Bay and adjacent waters in spring. Acta Ecologica Sinica, 35 (6): 191–195.

    Article  Google Scholar 

  • Patterson, K. R., 1988. Life history of Patagonian squid Loligo gahi and growth parameter estimates using least-squares fits to linear and von Bertalanffy models. Marine Ecology Progress Series, 47 (1): 65–74.

    Article  Google Scholar 

  • Pecl, G. T., and Jackson, G. D., 2008. The potential impacts of climate change on inshore squid: Biology, ecology and fisheries. Reviews in Fish Biology and Fisheries, 18 (4): 373–385.

    Article  Google Scholar 

  • Ricker, W. E., 1975. Computation and Interpretation of Biological Statistics of Fish Populations. Bulletin of the Fisheries Research Board of Canada, Bulletin 191, Ottawa, 382pp.

  • Roberts, M. J., and van der Berg, M., 2002. Recruitment variability of chokka squid—Role of currents on the Agulhas Bank (South Africa) in paralarval distribution and food abundance. Bulletin of Marine Science, 71 (2): 691–710.

    Google Scholar 

  • Segawa, S., and Nomoto, A., 2002. Laboratory growth, feeding, oxygen consumption and ammonia excretion of Octopus ocellatus. Bulletin of Marine Science, 71 (2): 801–813.

    Google Scholar 

  • Semmens, J. M., Pecl, G. T., Villanueva, R., Jouffre, D., Sobrino, I., Wood, J. B., and Rigby, P. R., 2004. Understanding octopus growth: Patterns, variability and physiology. Marine and Freshwater Research, 55 (4): 367–377.

    Article  Google Scholar 

  • Silva, L., Sobrino, I., and Ramos, F., 2002. Reproductive biology of the common octopus, Octopus vulgaris Cuvier, 1797 (Cephalopoda: Octopodidae) in the Gulf of Cádiz (SW Spain). Bulletin of Marine Science, 71 (2): 837–850.

    Google Scholar 

  • Su, W., Xue, Y., Zhang, C., and Ren, Y., 2015. Spatio-seasonal patterns of fish diversity, Haizhou Bay, China. Chinese Journal of Oceanology and Limnology, 33 (1): 121–134.

    Article  Google Scholar 

  • Tang, F. H., Shen, X. Q., and Wang, Y. L., 2011. Dynamics of fisheries resources near Haizhou Bay waters. Fisheries Science, 30 (6): 335–341.

    Google Scholar 

  • Villanueva, R., Vidal, E. A., Fernández-Álvarez, F. Á., and Nabhitabhata, J., 2016. Early mode of life and hatchling size in cephalopod molluscs: Influence on the species distributional ranges. PLoS One, 11 (11): e0165334.

    Article  Google Scholar 

  • Von Boletzky, S., and Villanueva, R., 2014. Cephalopod biology. In: Cephalopod Culture. Iglesias, J., et al., eds., Springer, Dordrecht, 3–16.

    Chapter  Google Scholar 

  • Zhang, Y. J., 2013. Spatial and temporal variations of macroinvertebrate community structure and diversity in Haizhou Bay and adjacent waters. Master thesis. Ocean University of China.

Download references

Acknowledgements

This research was partially supported by the National Key R&D Program of China (Nos. 2018YFD0900902, 2018YFD0900903), the National Natural Science Foundation of China (Nos. 41861134037, 41930534), and the ‘Fundamental Research Funds for the Central Universities’ to Ocean University of China (Nos. 201762015, 2018 2201). We thank Dr. Robert Boenish (University of Maine) for proofreading this manuscript and giving many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Tian, Y., Fu, C. et al. Growth and Distribution of Amphioctopus fangsiao (d’Orbigny, 1839–1841) in Haizhou Bay, Yellow Sea. J. Ocean Univ. China 19, 1125–1132 (2020). https://doi.org/10.1007/s11802-020-4322-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4322-7

Key words

Navigation