Skip to main content
Log in

MiR-430 Can Affect the Mesoderm Formation and Metamorphosis of Paralichthys olivaceus by Targeting lefty Gene

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

MiR-430 is a non-coding small RNA that participates in early embryonic development by acting on the Nodal signaling pathway. Its functions in Paralichthys olivaceus (P. olivaceus), however, remain unclear. In this study, through biological information technology, we hypothesized lefty was the target gene of miR-430. Lefty is a divergent member of the transforming growth factor-β (TGF-β) superfamily, and is involved in regulating left-right patterning as an antagonist of the Nodal signaling pathway. To study the relationship between miR-430 and lefty gene, miR-430 and fluorescent expression vector were transfected into embryo cells. Our results showed that miR-430 has important effects on early embryonic development. It can inhibit the expressions of lefty and other genes related to Nodal signaling pathway. Additionally, the expression of miR-430 was involved in the metamorphosis of P. olivaceus. This study clarifies the function of miR-430 in P. olivaceus, which will be helpful for further research on the interactions between miR-430 and the Nodal signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Garcia, I., and Miska, E. A., 2005. MicroRNA functions in animal development and human disease. Development, 132 (21): 4653–4662, DOI: 10.1242/dev.02073.

    Article  Google Scholar 

  • Ambros, V., 2004. The functions of animal microRNAs. Nature, 431 (7006): 350, DOI: 10.1038/nature02871.

    Article  Google Scholar 

  • Bartel, D. P., 2009. MicroRNAs: Target recognition and regulatory functions. Cell, 136 (2): 215–233, DOI: 10.1016/j.cell.2009.01.002.

    Article  Google Scholar 

  • Bhattacharya, M., Sharma, A. R., Sharma, G., Patra, B. C., Nam, J. S., Chakraborty, C., and Lee, S. S., 2017. The crucial role and regulations of miRNAs in zebrafish development. Protoplasma, 254 (1): 17–31, DOI: 10.1007/s00709-015-0931-1.

    Article  Google Scholar 

  • Chen, Y., and Schier, A. F., 2001. The zebrafish Nodal signal squint functions as a morphogen. Nature, 411 (6837): 607–610, DOI: 10.1038/35079121.

    Article  Google Scholar 

  • Choi, W. Y., 2009. Regulation of antagonistic signaling components by miR-430 microRNAs. PhD thesis. New York University.

    Google Scholar 

  • Choi, W. Y., Giraldez, A. J., and Schier, A. F., 2007. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science, 318 (5848): 271–274.

    Article  Google Scholar 

  • Fu, Y., Shi, Z., Wang, G., Zhang, J., Li, W., and Jia, L., 2013. Expression of let-7 microRNAs that are involved in Japanese flounder (Paralichthys olivaceus) metamorphosis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 165 (2): 106–113, DOI: 10.1016/j.cbpb.2013.03.012.

    Article  Google Scholar 

  • Fu, Y., Shi, Z., Wu, M., Zhang, J., Jia, L., and Chen, X., 2011. Identification and differential expression of microRNAs during metamorphosis of the Japanese flounder (Paralichthys olivaceus). PLoS One, 6 (7): e22957, DOI: 10.1371/journal.pone.0022957.

    Article  Google Scholar 

  • Giraldez, A. J., Mishima, Y., Rihel, J., Grocock, R. J., Van Dongen, S., Inoue, K., Enright, A. J., and Schier, A. F., 2006. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 312 (5770): 75–79.

    Article  Google Scholar 

  • Gore, A. V., Maegawa, S., Cheong, A., Gilligan, P. C., Weinberg, E. S., and Sampath, K., 2005. The zebrafish dorsal axis is apparent at the four-cell stage. Nature, 438 (7070): 1030–1035, DOI: 10.1038/nature04184.

    Article  Google Scholar 

  • Gritsman, K., Talbot, W. S., and Schier, A. F., 2000. Nodal signaling patterns the organizer. Development, 127 (5): 921–932, DOI: 10.1007/s004290050019.

    Google Scholar 

  • Guan, X. L., Zhang, B. C., and Sun, L., 2019. pol-miR-194a of Japanese flounder (Paralichthys olivaceus) suppresses type I interferon response and facilitates Edwardsiella tarda infection. Fish & Shellfish Immunology, 87: 220–225, DOI: 10.1016/j.fsi.2019.01.017.

    Article  Google Scholar 

  • Inui, Y., Yamano, K., and Miwa, S., 1995. The role of thyroid hormone in tissue development in metamorphosing flounder. Aquaculture, 135 (1-3): 87–98, DOI: 10.1016/0044-8486(95)01017-3.

    Article  Google Scholar 

  • Kloosterman, W. P., and Plasterk, R. H., 2006. The diverse functions of microRNAs in animal development and disease. Developmental Cell, 11 (4): 441–450, DOI: 10.1016/j.devcel.2006.09.009.

    Article  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J., Gibson, T. J., and Higgins, D. G., 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23 (21): 2947–2948, DOI: 10.1093/bioinformatics/btm404.

    Article  Google Scholar 

  • Li, G., Liu, X., Xing, C., Zhang, H., Shimeld, S. M., and Wang, Y., 2017. Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus. Proceedings of the National Academy of Sciences, 114: 3684–3689, DOI: 10.1073/pnas.1620519114.

    Google Scholar 

  • Liu, X., Ma, Y., Zhang, C., Wei, S., Cao, Y., and Wang, Q., 2013. Nodal promotes mir206 expression to control convergence and extension movements during zebrafish gastrulation. Journal of Genetics and Genomics, 40 (10): 515–521, DOI: 10.1016/j.jgg.2013.07.001.

    Article  Google Scholar 

  • Ma, L., Wang, W., Yang, X., Jiang, J., Song, H., Jiang, H., Zhang, Q., and Qi, J., 2014. Characterization of the Dmrt1 gene in the black rockfish Sebastes schlegeli revealed a remarkable sex-dimorphic expression. Fish Physiology and Biochemistry, 40 (4): 1263–1274.

    Google Scholar 

  • Mishima, Y., Giraldez, A. J., Takeda, Y., Fujiwara, T., Sakamoto, H., Schier, A. F., and Inoue, K., 2006. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Current Biology, 16 (21): 2135–2142.

    Article  Google Scholar 

  • Okada, N., Takagi, Y., Seikai, T., Tanaka, M., and Tagawa, M., 2001. Asymmetrical development of bones and soft tissues during eye migration of metamorphosing Japanese flounder, Paralichthys olivaceus. Cell and Tissue Research, 304 (1): 59–66, DOI: 10.1007/s004410100353.

    Article  Google Scholar 

  • Schier, A. F., 2003. Nodal signaling in vertebrate development. Annual Review of Cell and Developmental Biology, 19 (1): 589–621, DOI: 10.1146/annurev.cellbio.19.041603.094522.

    Article  Google Scholar 

  • Schier, A. F., and Talbot, W. S., 2005. Molecular genetics of axis formation in zebrafish. Annual Review of Genetics, 39: 561-613, DOI: 10.1146/annurev.genet.37.110801.143752.

    Google Scholar 

  • Schreiber, A. M., 2006. Asymmetric craniofacial remodeling and lateralized behavior in larval flatfish. Journal of Experimental Biology, 209 (4): 610–621, DOI: 10.1242/jeb.02056.

    Article  Google Scholar 

  • Schreiber, A. M., 2013. Flatfish: An asymmetric perspective on metamorphosis. Current Topics in Developmental Biology, 103: 167–194, DOI: 10.1016/B978-0-12-385979-2.00006-X.

    Article  Google Scholar 

  • Shen, M. M., 2007. Nodal signaling: Developmental roles and regulation. Development, 134 (6): 1023–1034, DOI: 10.1242/dev.000166.

    Article  Google Scholar 

  • Staton, A. A., Knaut, H., and Giraldez, A. J., 2011. miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration. Nature Genetics, 43 (3): 204–211, DOI: 10.1038/ng.758.

    Article  Google Scholar 

  • Su, Y., Xiao, X., Ling, H., Huang, N., Liu, F., Su, W., Zhang, Y., Xu, L., Muhammad, K., and Que, Y., 2019. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress. BMC Genomics, 20 (1): 57, DOI: 10.1186/s12864-018-5400-8.

    Article  Google Scholar 

  • Suzuki, T., Washio, Y., Aritaki, M., Fujinami, Y., Shimizu, D., Uji, S., and Hashimoto, H., 2009. Metamorphic pitx2 expression in the left habenula correlated with lateralization of eye-sidedness in flounder. Development, Growth & Differentiation, 51 (9): 797–808, DOI: 10.1111/j.1440-169X.2009.01139.x.

    Article  Google Scholar 

  • Svoboda, P., and Flemr, M., 2010. The role of miRNAs and endogenous siRNAs in maternal‐to‐zygotic reprogramming and the establishment of pluripotency. EMBO Reports, 11 (8): 590–597, DOI: 10.1038/embor.2010.102.

    Article  Google Scholar 

  • Takeda, Y., Mishima, Y., Fujiwara, T., Sakamoto, H., and Inoue, K., 2009. DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly (A) tail length in zebrafish. PLoS One, 4 (10): e7513, DOI: 10.1371/journal.pone.0007513.

    Article  Google Scholar 

  • Thatcher, E. J., Bond, J., Paydar, I., and Patton, J. G., 2008. Genomic organization of zebrafish microRNAs. BMC Genomics, 9 (1): 253, DOI: 10.1186/1471-2164-9-253.

    Article  Google Scholar 

  • Wahid, F., Shehzad, A., Khan, T., and Kim, Y. Y., 2010. Micro-RNAs: Synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA)–Molecular Cell Research, 1803 (11): 1231–1243, DOI: 10.1016/j.bbamcr. 2010.06.013.

    Article  Google Scholar 

  • Zhang, H., Fu, Y., Shi, Z., Su, Y., and Zhang, J., 2016. miR-17 is involved in Japanese flounder (Paralichthys olivaceus) development by targeting the Cdc42 mRNA. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 191: 163-170, DOI: 10.1016/j.cbpb.2015.10.005.

    Google Scholar 

  • Zhang, X., Li, L., Jiang, H., Ma, J. E., Li, J., and Chen, J., 2018. Identification and differential expression of microRNAs in testis and ovary of Amur sturgeon (Acipenser schrenckii). Gene, 658: 36–46, DOI: 10.1016/j.gene.2018.03.014.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 31372511) and the Fundamental Research Funds for the Central Universities (No. 201822026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, Z., Sun, M. et al. MiR-430 Can Affect the Mesoderm Formation and Metamorphosis of Paralichthys olivaceus by Targeting lefty Gene. J. Ocean Univ. China 19, 409–416 (2020). https://doi.org/10.1007/s11802-020-4131-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4131-z

Key words

Navigation