Skip to main content

Advertisement

Log in

Screening and Characterization of Nitrite-Degrading Bacterial Isolates Using a Novel Culture Medium

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this study, a novel culture medium that simulates shrimp pond conditions was established to screen nitrite-degrading isolates. The medium was supplemented with nitrite as a nitrogen source and shrimp feed as the major carbon source, to achieve the high nitrogen and low carbon nutritional status found in shrimp farming ponds. Screening using this medium identified potent denitrifying Bacillus isolates, among which Bacillus subtilis M7-1 was considered best. M7-1 was able to completely degrade nitrite-N in 24 h without much consumption of dissolved oxygen. Efficient denitrification activity took place in liquid cultures within a set of non-stringent ranges of pH (5.0-9.0), salinity (0-30) and temperature (25-35℃). The denitrifying enzyme gene was amplified, se-quenced and further identified as nirS type. In biosecurity assessments, M7-1 had no negative effects on shrimps at a dose of 106cfu mL−1. M7-1 could therefore be used in aquaculture to reduce and control the nitrogen concentration, and to promote the development of sustainable and healthy culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arig, N., Suzer, C., Gokvardar, A., Basaran, F., Coban, D., Yildirim, S., Kamaci, H. O., Firat, K., and Saka, S., 2013. Effects of probiotic (Bacillus sp.) supplementation during larval development of Gilthead Sea Bream (Sparus aurata, L.). Turkish Journal of Fisheries & Aquatic Sciences, 13 (3): 407–414.

    Article  Google Scholar 

  • Bernheimer, A. W., 1988. Assay of Hemolytic Toxins, Methods in Enzymology. Academic Press, Amsterdam, 213–217.

    Google Scholar 

  • Braker, G., Fesefeldt, A., and Witzel, K. P., 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology, 64 (10): 3769–3775.

    Article  Google Scholar 

  • Camargo, J. A., and Alonso, Á., 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32 (6): 831–849.

    Article  Google Scholar 

  • Cheng, S. Y., and Chen, J. C., 1999. Hemocyanin oxygen affinity, and the fractionation of oxyhemocyanin and deoxy-hemocyanin for Penaeus monodon exposed to elevated nitrite. Aquatic Toxicology, 45 (1): 35–46.

    Article  Google Scholar 

  • Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., and Verstraete, W., 2007. Nitrogen removal techniques in aquacul-ture for a sustainable production. Aquaculture, 270 (1): 1–14.

    Article  Google Scholar 

  • Duan, J., Fang, H., Su, B., Chen, J., and Lin, J., 2015. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater. Bioresource Technology, 179: 421–428.

    Article  Google Scholar 

  • GB 7493-87, 1987. Water quality-determination of nitrogen (nitrite)-Spectrophotometric method. The State Environmental Protection Administration of China, Beijing, 144–148.

    Google Scholar 

  • Gui, M., Chen, Q., and Ni, J., 2017. Effect of sulfamethoxazole on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresource Technology, 235: 325–331.

    Article  Google Scholar 

  • Hargreaves, J. A., 1998. Nitrogen biogeochemistry of aquacul-ture ponds. Aquaculture, 166 (3-4): 181–212.

    Article  Google Scholar 

  • Holt, J., 1994. Bergey’s Manual of Determinative Bacteriology, 9th edition. Lippincott Williams & Wilkins, Philadelphia, 1–22.

    Google Scholar 

  • Hotchkiss, J. H., Helser, M. A., Maragos, C. M., and Weng, Y. M., 1992. Nitrate, nitrite, and N-nitroso compounds: Food safety and biological implications. Acs Symposium Series-american Chemical Society, 484: 400–418.

    Article  Google Scholar 

  • Huang, F., Pan, L., Lv, N., and Tang, X., 2017. Characterization of novel Bacillus strain N31 from mariculture water capable of halophilic heterotrophic nitrification-aerobic denitrification. Journal of Bioscience and Bioengineering, 124 (5): 564–571.

    Article  Google Scholar 

  • Hui, C., Guo, X., Sun, P., Khan, R. A., Zhang, Q., Liang, Y., and Zhao, Y. H., 2018. Removal of nitrite from aqueous solution by Bacillus amyloliquefaciens biofilm adsorption. Bioresour-ce Technology, 248: 146–152.

    Article  Google Scholar 

  • Jensen, F. B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135 (1): 9–24.

    Article  Google Scholar 

  • Ji, B., Yang, K., Zhu, L., Jiang, Y., Wang, H., Zhou, J., and Zhang, H., 2015. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnology and Biopro-cess Engineering, 20 (4): 643–651.

    Article  Google Scholar 

  • Khin, T., and Annachhatre, A. P., 2004. Novel microbial nitrogen removal processes. Biotechnology Advances, 22 (7): 519–532.

    Article  Google Scholar 

  • Lalloo, R., Ramchuran, S., Ramduth, D., Görgens, J., and Gardiner, N., 2007. Isolation and selection of Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish. Journal of Applied Microbiology, 103 (5): 1471–1479.

    Article  Google Scholar 

  • Li, P., Zhang, S., and Liu, D., 2005. Study progress of bacterial aerobic denitrification. Journal of Microbiology, 25: 60–64.

    Google Scholar 

  • Liu, X., Steele, J. C., and Meng, X. Z., 2017. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 223: 161–169.

    Article  Google Scholar 

  • Ma, B., Wang, S., Cao, S., Miao, Y., Jia, F., Du, R., and Peng, Y., 2016. Biological nitrogen removal from sewage via anammox: Recent advances. Bioresource Technology, 200: 981–990.

    Article  Google Scholar 

  • Ma, F., Wang, H. Y., Zhou, D. D., and Zuo, W., 2005. Denitrification characteristics of an aerobic denitrifying bacterium Pseudomonas chloritidismutans strain X31. Journal of South China University of Technology, 33 (7): 42–46.

    Google Scholar 

  • Maag, M., and Vinther, F. P., 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology, 4 (1): 5–14.

    Article  Google Scholar 

  • Medeiros, R. S., Lopez, B. A., Sampaio, L. A., Romano, L. A., and Rodrigues, R. V., 2016. Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquaculture International, 24 (4): 985–993.

    Article  Google Scholar 

  • Miron, D. D. S., Moraes, B., Becker, A. G., Crestani, M., Spane-vello, R., Loro, V. L., and Baldisserotto, B., 2008. Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture, 277 (3): 192–196.

    Article  Google Scholar 

  • Nimrat, S., Suksawat, S., Boonthai, T., and Vuthiphandchai, V., 2012. Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Veterinary Microbiology, 159 (3-4): 443–450.

    Article  Google Scholar 

  • Pai, S. L., Chong, N. M., and Chen, C. H., 1999. Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment. Bioresource Technology, 68 (2): 179–185.

    Article  Google Scholar 

  • Ren, Y. X., Yang, L., and Liang, X., 2014. The characteristics of a novel heterotrophic nitrifying and aerobic denitrifying bacterium, Acinetobacter junii YB. Bioresource Technology, 171: 1–9.

    Article  Google Scholar 

  • Šiljeg, M., Foglar, L., and Kukučka, M., 2010. The ground water ammonium sorption onto Croatian and Serbian clinop-tilolite. Journal of Hazardous Materials, 178 (1): 572–577.

    Article  Google Scholar 

  • Song, Z. F., An, J., Fu, G. H., and Yang, X. L., 2011. Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds. Aquaculture, 319 (1): 188–193.

    Article  Google Scholar 

  • Sun, Y., Feng, L., Li, A., Zhang, X., Yang, J., and Ma, F., 2017. Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13. Biore-source Technology, 234: 264–272.

    Article  Google Scholar 

  • Sun, Z., Lv, Y., Liu, Y., and Ren, R., 2016. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresour-ce Technology, 220: 142–150.

    Article  Google Scholar 

  • Third, K. A., Gibbs, B., Newland, M., and Cord-Ruwisch, R., 2005. Long-term aeration management for improved N-removal via SND in a sequencing batch reactor. Water Research, 39 (15): 3523–3530.

    Article  Google Scholar 

  • Tomasso, J. R., 1994. Toxicity of nitrogenous wastes to aquacul-ture animals. Reviews in Fisheries Science, 2 (4): 291–314.

    Article  Google Scholar 

  • Tseng, I. T., and Chen, J. C., 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish & Shellfish Immunology, 17 (4): 325–333.

    Article  Google Scholar 

  • Van Rijn, J., Tal, Y., and Schreier, H. J., 2006. Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering, 34 (3): 364–376.

    Article  Google Scholar 

  • Wan, W., He, D., and Xue, Z., 2017. Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium En-terobacter cloacae HW-15. Ecological Engineering, 99: 199–208.

    Article  Google Scholar 

  • Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., and Khanal, S. K., 2017. Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76: 9–19.

    Article  Google Scholar 

  • Yang, X. P., Wang, S. M., Zhang, D. W., and Zhou, L. X., 2011. Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Bacillus sub-tilis A1. Bioresource Technology, 102 (2): 854–862.

    Article  Google Scholar 

  • Zhang, Q. L., Liu, Y., Ai, G. M., Miao, L. L., Zheng, H. Y., and Liu, Z. P., 2012. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus me-thylotrophicus strain L7. Bioresource Technology, 108 (3): 35–44.

    Article  Google Scholar 

  • Zhou, Q., Li, K., Jun, X., and Bo, L., 2009. Role and functions of beneficial microorganisms in sustainable aquaculture. Bio-resource Technology, 100 (16): 3780–3786.

    Article  Google Scholar 

  • Zhou, W., Sun, Y., Wu, B., Zhang, Y., Huang, M., Miyanaga, T., and Zhang, Z., 2011. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. Journal of Environmental Sciences, 23 (11): 1761–1769.

    Article  Google Scholar 

  • Zokaeifar, H., Babaei, N., Che, R. S., Kamarudin, M. S., Sijam, K., and Balcazar, J. L., 2014. Administration of Bacillus sub-tilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Lito-penaeus vannamei. Fish & Shellfish Immunology, 36 (1): 68–74.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Special Fund for Qingdao Marine Biomedical science and Technology Innovation Center, China (No. 2017-CXZX01-3-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengguo He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., He, Z. Screening and Characterization of Nitrite-Degrading Bacterial Isolates Using a Novel Culture Medium. J. Ocean Univ. China 19, 241–248 (2020). https://doi.org/10.1007/s11802-020-4093-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4093-1

Key words

Navigation