Skip to main content
Log in

Effects of Methyl Jasmonate on the Composition of Volatile Compounds in Pyropia yezoensis

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Volatile organic compounds in marine algae have been reported to comprise characteristic flavor of algae and play an important role in their growth, development and defensive response. Yet their biogeneration remain largely unknown. Here we studied the composition of volatile compouds in Pyropia yezoensis and their variations in response to methyl jasmonate (MeJA) and diethyldithiocarbamic acid (DIECA) treatment using gas chromatography-mass spectrometry (GC-MS). A total of 44 compounds belonging to the following chemical classes (n) were identified, including aldehydes (11), alcohols (8), acids and esters (6), alkanes (5), ketones (5), alkenes (3), and S- or N-containing miscellaneous compounds (6). External treatment with plant hormone MeJA increased the content of 1-dodecanol, 4-heptenal, and 2-propenoic acid-2-methyl dodecylester, but decreased the content of phytol, 3-heptadecene, 2-pentadecanone, and isophytol. When pretreated with DIECA, an inhibitor of the octadecanoid pathway leading to the biosynthesis of endogeneous jasmonates and some secondary metabolites, phytol and isophytol were increased, while 4-heptenal, 1-dodecanol, and 2-propenoic acid-2-methyl dodecylester were decreased, both of which were negatively correlated with their variations under MeJA treatment. Collectively, these results suggest that MeJA does affect the volatile composition of P. yezoensis, and the octadecanoid pathway together with endogenous jasmonate pathway may be involved in the biosynthesis of volatile compounds, thereby providing some preliminary envision on the composition and biogeneration of volatile compounds in P. yezoensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akakabe, Y., and Kajiwara, T., 2008. Bioactive volatile compounds from marine algae: Feeding attractants. Journal of Applied Phycology, 20 (5): 661–664.

    Article  Google Scholar 

  • Arnold, T. M., Targett, N. M., Tanner, C. E., Hatch, W. I., and Ferrari, K. E., 2001. Evidence for methyl jasmonate induced phlorotannin production in Fucus vesiculosus (Phaeophyceae). Journal of Phycology, 37 (6): 1026–1029.

    Article  Google Scholar 

  • Boonprab, K., Matsui, K., Akakabe, Y., Yoshida, M., Yotsukura, N., Chirapart, A., and Kajiwara, T., 2006. Formation of aldehyde flavor (n-hexanal, 3Z-nonenal and 2E-nonenal) in the brown alga, Laminaria angustata. Journal of Applied Phycology, 18 (3-5): 409–412.

    Article  Google Scholar 

  • Bouarab, K., Adas, F., Gaquerel, E., Kloareg, B., Salaün, J. P., and Potin, P., 2004. The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiology, 135 (3): 1838–1848.

    Article  Google Scholar 

  • Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., and Allen, A. E., 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465: 617–621.

    Article  Google Scholar 

  • Collén, J., Hervé, C., Guisle-Marsollier, I., Leger, J., and Boyen, C., 2006. Expression profiling of Chondrus crispus (Rhodophyceae) after exposure to methyl jasmonate. Journal of Experimental Botany, 57 (14): 3869–3881.

    Article  Google Scholar 

  • Dar, T. A., Uddin, M., Khan, M. M. A., Hakeem, K. R., and Jaleel, H., 2015. Jasmonates counter plant stress: A review. Environmental and Experimental Botany, 115: 49–57.

    Article  Google Scholar 

  • Farmer, E. E., Caldelari, D., Pearce, C., Walker-Simmons, M. K., and Ryan, C. A., 1994. Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiology, 106 (1): 337–342.

    Article  Google Scholar 

  • Ferraces-Casais, P., Lage-Yusty, M. A., Rodríguez-Bernaldo de Quirós, A., and López-Hernández, J., 2013. Rapid identification of volatile compounds in fresh seaweed. Talanta, 115: 798–800.

    Article  Google Scholar 

  • Flament, I., and Ohloff, G., 1984. Volatile constituents of algae: Odoriferous constituents of seaweeds and structure of nor-terpenoids identified in Asakusanori flavor. In: Progress in Flavor Research, Adda, J., ed., Elsevier, Amsterdam, 281–300.

    Google Scholar 

  • Fujii, S., Yamamoto, R., Miyamoto, K., and Ueda, J., 1997. Occurrence of jasmonic acid in Dunalliela (Dunalielales, Chlorophyta). Phycological Research, 45 (4): 223–226.

    Article  Google Scholar 

  • Fujimura, T., Kawai, T., Kajiwara, T., and Ishida, Y., 1994. Volatile components in protoplasts isolated from the marine brown alga Dictyopteris prolifera (Dictyotales). Plant Tissue Culture Letters, 11 (1): 34–39.

    Article  Google Scholar 

  • Gupta, S., and Abu-Ghannam, N., 2011. Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science & Technology, 22 (6): 315–326.

    Article  Google Scholar 

  • Hamberg, M., and Gerwick, W. H., 1993. Biosynthesis of vicinal dihydroxy fatty acids in the red alga Gracilariopsis lemaneiformis: Identification of a sodium-dependent 12-lipoxygenase and a hydroperoxide isomerase. Archives of Biochemistry and Biophysics, 305 (1): 115–122.

    Article  Google Scholar 

  • Hamberg, M., Gerwick, W. H., and Asen, P., 1992. Linoleic acid metabolism in the red alga Lithothamnion corallioides: Biosynthesis of 11(R)-hydroxy-9(Z),12(Z)-octadecadienoic acid. Lipids, 27 (7): 487–493.

    Article  Google Scholar 

  • Hu, C. M., Xu, J. L., Zhu, J. Y., Yan, X. J., Luo, Q. J., Yang, J. X., and Xu, P., 2011. Characteristic volatile matters in Porphyra (Bangiales). Marine Sciences, 35 (5): 106–111.

    Google Scholar 

  • Jürgens, A., Witt, T., and Gottsberger, G., 2003. Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochemical Systematics and Ecology, 31 (4): 345–357.

    Article  Google Scholar 

  • Kajiwara, T., Kashibe, M., Matsui, K., and Hatanaka, A., 1990. Volatile compounds and long-chain aldehydes formation in conchocelis-filaments of a red alga, Porphyra tenera. Phytochemistry, 29 (7): 2193–2195.

    Article  Google Scholar 

  • Kajiwara, T., Matsui, K., Akakabe, Y., Murakawa, T., and Arai, C., 2006. Antimicrobial browning-inhibitory effect of flavor compounds in seaweeds. Journal of Applied Phycology, 18 (3-5): 413–422.

    Article  Google Scholar 

  • Kajiwara, T., Matsui, K., and Akakabe, Y., 1996. Biogeneration of volatile compounds via oxylipins in edible seaweeds. In: Biotechnology for Improved Foods and Flavors. Takeoka, G. R., et al., eds., American Chemical Society, Washington DC, 146–166.

    Chapter  Google Scholar 

  • Kajiwara, T., Matsui, K., Hatanaka, A., Tomoi, T., Fujimura, T., and Kawai, T., 1993. Distribution of an enzyme system producing seaweed flavor: Conversion of fatty acids to longchain aldehydes in seaweeds. Journal of Applied Phycology, 5 (2): 225–230.

    Article  Google Scholar 

  • Kladi, M., Vagias, C., and Roussis, V., 2004. Volatile halogenated metabolites from marine red algae. Phytochemistry Reviews, 3 (3): 337–366.

    Article  Google Scholar 

  • Kodama, K., Kajiwara, T., Matsui, K., and Matsui, K., 1993. Volatile compounds from Japanese marine brown algae. In: Bioactive Volatile Compounds From Plants. Teranishi, R., et al., eds., Washington DC, American Chemistry Society, 103–120.

    Google Scholar 

  • Krupina, M. V., and Dathe, W., 1991. Occurrence of jasmonic acid in the red alga Gelidium latifolium. Zeitschrift für Naturforschung C, 46: 1127–1129.

    Google Scholar 

  • Kumari, P., Reddy, C. R., and Jha, B., 2015. Methyl jasmonateinduced lipidomic and biochemical alterations in the intertidal macroalga Gracilaria dura (Gracilariaceae, Rhodophyta). Plant Cell Physiology, 56 (10): 1877–1889.

    Article  Google Scholar 

  • Küpper, F. C., Gaquerel, E., Cosse, A., Adas, F., Peters, A. F., Müller, D. G., Kloareg, B., Salaün, J. P., and Potin, P., 2009. Free fatty acids and methyl jasmonate trigger defense reactions in Laminaria digitata. Plant Cell Physiology, 50 (4): 789–800.

    Article  Google Scholar 

  • Menke, F. L. H., Parchmann, S., Mueller, M. J., Kijne, J. W., and Memelink, J., 1999. Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiology, 119 (4): 1289–1296.

    Article  Google Scholar 

  • Neelamathi, E., and Kannan, R., 2016. Screening and characterization of bioactive compounds of Turbinaria ornata from the gulf of Mannar, India. American-Eurasian Journal of Agricultural & Environmental Sciences, 16 (2): 243–251.

    Google Scholar 

  • Nor Qhairul Izzreen, M. N., and Vijaya Ratnam, R., 2011. Volatile compound extraction using solid phase micro extraction coupled with gas chromatography mass spectrometry (SPMEGCMS) in local seaweeds of Kappaphycus alvarezii, Caulerpa lentillifera and Sargassum polycystem. International Food Research Journal, 18 (4): 1449–1456.

    Google Scholar 

  • Wasternack, C., and Hause, B., 2013. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111: 1021–1058.

    Article  Google Scholar 

  • Whelan, J., Tarafa, M. E., and Hunt, J. M., 1982. Volatile C1-C8 organic compounds in macroalgae. Nature, 299 (5878): 50–52.

    Article  Google Scholar 

  • Yamamoto, M., Baldermann, S., Yoshikawa, K., Fujita, A., Mase, N., and Watanabe, N., 2014. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry. The Scientific World Journal, 289780, DOI: 10.1155/2014/289780.

    Google Scholar 

  • Zeneli, G., Krokene, P., Christiansen, E., Krekling, T., and Gershenzon, J., 2006. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiology, 26 (8): 977–988.

    Article  Google Scholar 

  • Zhao, J., Davis, L. C., and Verpoorte, R., 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23 (4): 283–333.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the PhD fellowship program of Soochow University and the National Natural Science Foundation of China (No. 41276134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songdong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Wang, L., Wang, L. et al. Effects of Methyl Jasmonate on the Composition of Volatile Compounds in Pyropia yezoensis. J. Ocean Univ. China 17, 291–296 (2018). https://doi.org/10.1007/s11802-018-3319-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-018-3319-y

Keywords

Navigation