Skip to main content
Log in

Origin of the volcanic rocks erupted in the eastern Manus Basin: Basaltic andesite-andesite-dacite associations

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

There has been much recent interest in the origin of intermediate lava and several hypotheses are: 1) direct melting of the mantle under water-saturated conditions, 2) partial melting of altered crust, 3) fractional crystallization of parent magma, and 4) magma mixing of mafic magmas with dacitic/rhyolitic magmas. Volcanic rocks series ranging from basaltic andesite to dacite (SiO2 ranges from 53.8 to 63.0 wt.%) from the eastern Manus Basin were detected for major and trace element compositions to understand their origin. Low H2O contents, positive correlations of La-SiO2 and Yb-SiO2, oxygen isotope data and the indistinct change of trace element concentrations in oscillatory zoning of plagioclase phenocrysts rule out the models in which silicic lava results from direct melting of hydrous mantle, partial melting of altered oceanic crust or gabbros, and magma mixing, respectively. Besides, the geochemical data of whole rock and melt inclusions indicate that fractional crystallization plays a dominant role in generating the intermediate lava with subduction features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeev, R. R., Ariskin, A. A., Kimura, J. I., and Barmina, G., 2013. The role of polybaric crystallization in genesis of andesitic magmatic: Phase equilibria simulations of the Bezymianny volcanic subseries. Journal of Volcanology and Geothermal Research, 263 (1): 182–192.

    Article  Google Scholar 

  • Bach, W., Roberts, S., Vanko, D. A., Binns, R. A., Yeats C. J., Craddock, P. R., and Humphris, S. E., 2003. Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea. Mineralium Deposita, 38 (8): 916–935.

    Article  Google Scholar 

  • Beaudoin, Y., Scott, S. D., Gorton, M. P., Zajacz, Z., and Halter, W., 2007. Effects of hydrothermal alteration on Pb in the active Pacmanus hydrothermal field, ODP Leg 193, Manus Basin, Papua New Guinea: A LA-ICP-MS study. Geochimica et Cosmochimica Acta, 71 (17): 4256–4278.

    Article  Google Scholar 

  • Beier, C., Bach, W., Turner, S., Niedermeier, D., Woodhead, J., Erzinger, J., and Krumm, S., 2015. Origin of silicic magmas at spreading centres: An example from the South East Rift, Manus Basin. Journal of Petrology, 56 (2): 255–272, DOI: 10.1093/petrology/egu077.

    Article  Google Scholar 

  • Beier, C., Turner, S. P., Sinton, J. M., and Gill, J. B., 2010. Influence of subducted components on back-arc melting dynamics in the Manus Basin. Geochemistry Geophysics Geosystems, 11 (6): Q0AC03, DOI: 10.1029/2010GC003037.

    Article  Google Scholar 

  • Benes, V., Scott, S. D., and Binns, R. A., 1994. Tectonics of rift propagation into a continental margin: Western Woodlark Basin, Papua New Guinea. Journal of Geophysical Research Solid Earth, 99 (B3): 4439–4455.

    Article  Google Scholar 

  • Binns, R. A., and Scott, S. D., 1993. Actively forming polymetallic sulfide deposits associated with felsic vocanic rocks in the eastern Manus Back-arc Basin, Papua New Guinea. Economic Geology, 88 (8): 2226–2236.

    Article  Google Scholar 

  • Brophy, J. G., 2009. La–SiO2 and Yb–SiO2 systematics in midocean ridge magmas: Implications for the origin of oceanic plagiogranite. Contributions to Mineralogy and Petrology, 158 (1): 99–111.

    Article  Google Scholar 

  • Carmichael, I. S. E., 2002. The andesite aqueduct: Perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contributions to Mineralogy and Petrology, 143 (6): 641–663.

    Article  Google Scholar 

  • Class, C., Miller, D. M., Goldstein, S. L., and Langmuir, C. H., 2000. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian arc. Geochemistry Geophysics Geosystems, 1 (6): 1–28, DOI: 10.1029/1999GC000010.

    Article  Google Scholar 

  • Coogan, L. A., Mitchell, N. C., and O’Hara, M. J., 2003. Roof assimilation at fast spreading ridges: An investigation combining geophysical, geochemical, and field evidence. Journal of Geophysical Research Solid Earth, 108 (B1): 1–14.

    Google Scholar 

  • DePaolo, D. J., 1981. Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53 (2): 189–202.

    Article  Google Scholar 

  • Dessimoz, M., Mü ntener, O., and Ulmer, P., 2012. A case for hornblende dominated fracitonation of arc magmas: The Chelan Complex (Washington Cascades). Contributions to Mineralogy and Petrology, 163: 567–589.

    Article  Google Scholar 

  • Dungan, M. A., and Davidson, J., 2004. Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: An example from the Chilean Andes. Geology, 32 (9): 773–776.

    Article  Google Scholar 

  • Eiler, J. M., Schiano, P., Kitchen, N., and Stolper, E. M., 2000. Oxygen-isotype evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature, 403: 530–534.

    Article  Google Scholar 

  • Gamo, T., Sakai, H., Ishibashi, J., Nakayama, E., Isshiki, K., Matsuura, H., Shitashima, K., Takeuchi, K., and Ohta, S., 1993. Hydrothermal plumes in the eastern Manus Basin, Bismarck Sea: CH4, Mn, Al and pH anomalies. Deep Sea Research Part I: Oceanographic Research Papers, 40 (11–12): 2335–2349.

    Article  Google Scholar 

  • Gao, J. F., Zhou, M. F., Robinson, P. T., Wang, C. Y, Zhao, J. H., and Malpas, J., 2015. Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SETibetan Plateau. Journal of Asian Earth Sciences, 98: 1–17.

    Article  Google Scholar 

  • Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag, New York, 390pp.

    Book  Google Scholar 

  • Ginibre, C., Wörner, G., and Kronz, A., 2007. Crystal zoning as an archive for magma evolution. Elements, 3 (4): 261–266.

    Article  Google Scholar 

  • Grove, T. L., Till, C. B., and Krawczynski, M. J., 2012. The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40: 413–439.

    Article  Google Scholar 

  • Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V., and Carley, T. L., 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53 (5): 875–890.

    Article  Google Scholar 

  • Hildreth, W., and Moorbath, S., 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 98 (4): 455–489.

    Article  Google Scholar 

  • Hofmann, A. W., Jochum, K. P., Seufert, M., and White, W. M., 1988. Nb and Pb in oceanic basalts: New constrains on mantle evolution. Earth and Planetary Science Letters, 79 (1–2): 33–45.

    Google Scholar 

  • Housh, T. B., and Luhr, J. F., 1991. Plagioclase-melt equilibria in hydrous systems. American Mineralogist, 76: 477–492.

    Google Scholar 

  • Irvine, T. N., and Baragar, W. R. A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8 (5): 523–548.

    Article  Google Scholar 

  • Jagoutz, E., Burg, J. P., Hussain, S., Dawood, H., Pettke, T., Iizuka, T., and Maruyama, S., 2009. Construction of the granitoid crust of an island arc part I: Geochronological and geochemical cosntraints from the plutonic Kohistant (NW Pakistan). Contributions to Mineralogy and Petrology, 158: 739–755.

    Article  Google Scholar 

  • Kamenetsky, V. S., Binns, R. A., Gemmell, J. B., Crawford, A. J., Mernagh, T. P., Maas, R., and Steele, D., 2001. Parental basatic melts and fluids in eastern Manus backarc basin: Implications for hydrothermal mineralization. Earth and Planetary Science Letters, 184 (3–4): 685–702.

    Article  Google Scholar 

  • Kawamoto, T., and Holloway, J. R., 1997. Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 Gigapascals. Science, 276 (5310): 240–243.

    Article  Google Scholar 

  • Kim, J., Lee, I., and Lee, K. Y., 2004. S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the eastern Manus basin, western Pacific: Evaluation of magmatic contribution to hydrothermal system. Journal of Geophysical Research, 109 (B12): 159–163.

    Article  Google Scholar 

  • Koepke, J., Berndt, J., Feig, S. T., and Holtz, F., 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, 153 (1): 67–84.

    Article  Google Scholar 

  • Kudo, A. M., and Weill, D. F., 1970. An igneous plagioclase thermometer. Contributions to Mineralogy and Petrology, 25 (1): 52–65.

    Article  Google Scholar 

  • Lange, R. A., Frey, H. M., and Hector, J., 2009. A thermodynamic model for the plagioclase-liquid hygrometer /thermometer. American Mineralogist, 94 (4): 494–506.

    Article  Google Scholar 

  • Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R., and Zanettin, B., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell, Oxford, 193pp.

    Google Scholar 

  • Le Roux, P. J., Shirey, S. B., Hauri, E. H., Perfit, M. R., and Bender, J. F., 2006. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): Evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth and Planetary Science Letters, 251 (3–4): 209–231.

    Google Scholar 

  • Martinez, F., and Taylor, B., 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus basin. Marine Geophysical Researches, 18 (2): 203–224.

    Article  Google Scholar 

  • Miller, D. M., Goldstein, S. L., and Langmuir, C. H., 1994. Ce/Pb and Pb isotope ratios in arc magmas and the enrichment of Pb in the continents. Nature, 368: 514–519.

    Article  Google Scholar 

  • Monecke, T., Giorgetti, G., Scholtysek, O., Kleeberg, R., Gö tze, J., Hannington, M. D., and Petersen, S., 2007. Textural and mineralogical changes associated with the incipient hydrothermal alteration of glassy dacite at the submarine Pacmanus hydrothermal system, eastern Manus Basin. Journal of Volcanology and Geothermal Research, 160 (1–2): 23–41.

    Article  Google Scholar 

  • Moss, R., Scott, S. D., and Binns, R. A., 2001. Gold content of eastern Manus basin volcanic rocks: Implications for enrichment in associated hydrothermal precipit. Economic Geology, 96 (1): 91–107.

    Google Scholar 

  • Ortega-Osorio, A., and Scott, S. D., 2001. Morphological and chemical characterization of neutrally buoyant plume-derived particles at the eastern Manus Basin hydrothermal field, Papua New Guinea. Canadian Mineralogist, 39: 17–31.

    Article  Google Scholar 

  • Panjasawatwong, Y., Danyushevsky, L. V., Crawford, A. J., and Harris, K. L., 1995. An experimental study of the effects of melt composition on plagioclase–melt equilibria at 5 and 10 kbar: Implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology, 118 (4): 420–432.

    Article  Google Scholar 

  • Park, S. H., Lee, S. M., Kamenov, G. D., Kwon, S. T., and Lee, K. Y., 2010. Tracing the origin of subduction components beneath the South East Rift in the Manus Basin, Papua New Guinea. Chemical Geology, 269 (3–4): 339–349.

    Article  Google Scholar 

  • Putirka, K. D., 2005. Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations. American Mineralogist, 90: 336–346.

    Article  Google Scholar 

  • Rickwood, P. C., 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22: 247–263.

    Article  Google Scholar 

  • Shaw, A. M., Hilton, D. R., Macpherson, C. G., and Sinton, J. M., 2004. The CO2-He-Ar-H2O systematics of the Manus back-arc basin: Resolving source composition from degassing and contamination effects. Geochimica et Cosmochimica Acta, 68 (8): 1837–1855.

    Article  Google Scholar 

  • Singer, B. S., and Dunga, M. A., 1995. Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: Clues to the dynamics of calc-alkaline magma chambers. American Mineralogist, 80 (7–8): 776–798.

    Article  Google Scholar 

  • Sinton, J. M., 1997. The Manus Spreading Center near 3°22?S and the Worm Garden hydrothermal site: Results of Ar2 submersible dive 15l. Marine Geology, 142 (1): 207–209.

    Article  Google Scholar 

  • Sinton, J. M., Ford, L. L., Chappell, B., and McCulloch, M. T., 2003. Magma genesis and mantle heterogeneity in the Manus back-arc Basin, Papua New Guinea. Journal of Petrology, 44 (1): 159–195.

    Article  Google Scholar 

  • Sisson, T. W., and Grove, T. L., 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113 (2): 143–166.

    Article  Google Scholar 

  • Sisson, T., Ratajeski, K., Hankins, W., and Glazner, A., 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148 (6): 635–661.

    Article  Google Scholar 

  • Staudigel, H., 2003. Hydrothermal alteration processes in the oceanic crust (abstract). Treatise on Geochemistry, 3: 511–535.

    Article  Google Scholar 

  • Sun, S. S., and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Journal of the Geological Society, 42: 313–345.

    Article  Google Scholar 

  • Sun, W. D., Binns, R. A., Fan, A. C., Kamenetsky, V. S., Wysoczanski, R., Wei, G., Hu, Y. H., and Arculus, R. J., 2007. Chlorine in submarine volcanic glasses from the eastern Manus basin. Geochimica et Cosmochimica Acta, 71 (6): 1542–1552.

    Article  Google Scholar 

  • Taylor, B., 1979. Bismarck Sea: Evolution of a back-arc basin. Geology, 7 (4): 171–174.

    Article  Google Scholar 

  • Ustunisik, G., Kilinc, A., and Nielsen, R. L., 2014. New insights into the processes controlling compositional zoning in plagioclase. Lithos, 200-201: 80–93.

    Article  Google Scholar 

  • Viccaro, M., Giacomoni, P. P., Ferlito, C., and Cristofolini, R., 2010. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos, 116 (1–2): 77–91.

    Google Scholar 

  • Yang, K. H., and Scott, S. D., 2002. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc Basin. Economic Geology, 97 (5): 1079–1100.

    Article  Google Scholar 

  • Yang, K. H., and Scott, S. D., 2005. Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the eastern Manus back-Arc basin, Western Pacific: Evidence from melt inclusions. Economic Geology, 100 (6): 1085–1096.

    Article  Google Scholar 

  • Zeng, Z. G., Ouyang, H. G., Yin, X. B., Chen, S., Wang, X. Y., and Wu, L., 2012. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: Mineralogical and geochemical evidence. Journal of Asian Earth Sciences, 60: 130–146.

    Article  Google Scholar 

  • Zhao, H. J., Zeng, Z. G., Yin, X. B., and Chen, S., 2014. Silicon and oxygen isotopic composition of igneous rocks from the eastern Manus basin. Journal of Ocean University of China, 13 (3): 421–427.

    Article  Google Scholar 

  • Zimmer, M. M., Plank, T., Hauri, E. H., Yogodzinski, G. M., Stelling, P., Larsen, J., Singer, B., Jicha, B., Mandeville, C., and Nye, C. C., 2010. The role of water in generating the calc-alkaline trend: New volatile data for Aleutian magmas and a new tholeiitic index. Journal of Petrology, 51 (12): 2411–2444.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the crew of ‘KX08-973’ cruise for their paramount hardworking in obtaining the samples. Institute of Oceanology, Chinese Academy of Sciences, Institute of Geology and Geophysics, Chinese Academy of Sciences, as well as Institute of Mineral Resources, Chinese Academy of Geological Sciences are greatly acknowledged for high quality sample analyses.

This work was supported by the National Key Basic Research Program of China (No. 2013CB429700), the National Natural Science Foundation of China (Nos. 41325021, 41306053, 40476044), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA11030302), the Special Fund for the Taishan Scholar Program of Shandong Province (No. ts201511061), the AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASTP-0S17), the Innovative Talent Promotion Program (No. 2012RA2191), the Science and Technology Development Program of Shandong Province (No. 2013GRC31502), the Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2015ASKJ03), the National High Level Talent Special Support Program, the CAS/SAFEA International Partnership Program for Creative Research Teams, and the Qingdao Collaborative Innovation Center of Marine Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zeng, Z., Chen, S. et al. Origin of the volcanic rocks erupted in the eastern Manus Basin: Basaltic andesite-andesite-dacite associations. J. Ocean Univ. China 16, 389–402 (2017). https://doi.org/10.1007/s11802-017-3142-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-017-3142-x

Key words

Navigation