Skip to main content
Log in

Determination of internal controls for quantitative gene expression of Isochrysis zhangjiangensis at nitrogen stress condition

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Isochrysis zhangjiangensis is a potential marine microalga for biodiesel production, which accumulates lipid under nitrogen limitation conditions, but the mechanism on molecular level is veiled. Quantitative real-time polymerase chain reaction (qPCR) provides the possibility to investigate the gene expression levels, and a valid reference for data normalization is an essential prerequisite for firing up the analysis. In this study, five housekeeping genes, actin (ACT), α-tubulin (TUA), ß-tubulin (TUB), ubiquitin (UBI), 18S rRNA (18S) and one target gene, diacylglycerol acyltransferase (DGAT), were used for determining the reference. By analyzing the stabilities based on calculation of the stability index and on operating the two types of software, geNorm and bestkeeper, it showed that the reference genes widely used in higher plant and microalgae, such as UBI, TUA and 18S, were not the most stable ones in nitrogen-stressed I. zhangjiangensis, and thus are not suitable for exploring the mRNA expression levels under these experimental conditions. Our results show that ACT together with TUB is the most feasible internal control for investigating gene expression under nitrogen-stressed conditions. Our findings will contribute not only to future qPCR studies of I. zhangjiangensis, but also to verification of comparative transcriptomics studies of the microalgae under similar conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, C. L., Jensen, J. L., and Orntoft, T. F., 2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64: 5245–5250.

    Article  Google Scholar 

  • Boyle, N. R., Page, M. D., Liu, B., Blaby, I. K., Casero, D., Kropat, J., Cokus, S. J., Hong-Hermesdorf, A., Shaw, J., Karpowicz, S. J., Gallaher, S. D., Johnson, S., Benning, C., Pellegrini, M., Grossman, A., and Merchant, S. S., 2012. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. Journal of Biological Chemistry, 287: 15811–15825.

    Article  Google Scholar 

  • Brunner, A. M., Yakovlev, I. A., and Strauss, S. H., 2004. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology, 4: 14.

    Article  Google Scholar 

  • Burns, M., and Valdivia, H., 2008. Modelling the limit of detection in real-time quantitative PCR. European Food Research and Technology, 226: 1513–1524.

    Article  Google Scholar 

  • Bustin, S. A., 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25: 169–193.

    Article  Google Scholar 

  • Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J., and Wittwer, C. T., 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55: 611–622.

    Article  Google Scholar 

  • Bustin, S. A., 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. Journal of Molecular Endocrinology, 29: 23–39.

    Article  Google Scholar 

  • Chen, W., Sommerfeld, M., and Hu, Q., 2011. Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresource Technology, 102: 135–141.

    Article  Google Scholar 

  • Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W. R., 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139: 5–17.

    Article  Google Scholar 

  • Deng, X. D., Gu, B., Li, Y. J., Hu, X. W., Guo, J. C., and Fei, X. W., 2012. The roles of acyl-CoA: Diacylglycerol acyltrans-ferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Molecular Plant, 5: 945–947.

    Article  Google Scholar 

  • Fang, W., Si, Y., Douglass, S., Casero, D., Merchant, S. S., Pellegrini, M., Ladunga, I., Liu, P., and Spalding, M. H., 2012. Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell, 24: 1876–1893.

    Article  Google Scholar 

  • Feng, D., Chen, Z., Xue, S., and Zhang, W., 2011. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresource Technology, 102: 6710–6716.

    Article  Google Scholar 

  • Galiveti, C. R., Rozhdestvensky, T. S., Brosius, J., Lehrach, H., and Konthur, Z., 2010. Application of housekeeping npc-RNAs for quantitative expression analysis of human transcriptome by real-time PCR. RNA, 16: 450–461.

    Article  Google Scholar 

  • Guo, Z., Chen, Z. A., and Zhang, W., 2008. Improved hydrogen photoproduction regulated by carbonylcyanide m-chlorophenylhrazone from marine green alga Platymonas subcordiformis grown in CO2-supplemented air bubble column bioreactor. Biotechnology Letters, 30: 877–883.

    Article  Google Scholar 

  • Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A., 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, 54: 621–639.

    Article  Google Scholar 

  • Jain, M., Nijhawan, A., Tyagi, A. K., and Khurana, J. P., 2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, 345: 646–651.

    Article  Google Scholar 

  • Kang, L. K., Hwang, S. P. L., Gong, G. C., Lin, H. J., Chen, P. C., and Chang J., 2007. Influences of nitrogen deficiency on the transcript levels of ammonium transporter, nitrate transporter and glutamine synthetase genes in Isochrysis galbana (Isochrysidales, Haptophyta). Phycologia, 46: 521–533.

    Article  Google Scholar 

  • Kang, L. K., Hwang, S. P. L., Lin, H. J., Chen, P. C., and Chang, J., 2009. Establishment of minimal and maximal transcript levels for nitrate transporter genes for detecting nitrogen deficiency in the marine phytoplankton Isochrysis galbana (Prymnesiophyceae) and Thalassiosira pseudonana (Bacillariophyceae). Journal of Phycology, 45: 864–872.

    Article  Google Scholar 

  • Kang, L. K., Tsui, F. H., and Chang, J., 2012. Quantification of diatom gene expression in the sea by selecting uniformly transcribed mRNA as the basis for normalization. Applied and Environmental Microbiology, 78: 6051–6058.

    Article  Google Scholar 

  • Karlen, Y., McNair, A., Perseguers, S., Mazza, C., and Mermod, N., 2007. Statistical significance of quantitative PCR. BMC Bioinformatics, 8: 131.

    Article  Google Scholar 

  • Lilly, S. T., Drummond, R. S., Pearson, M. N., and MacDiarmid, R. M., 2011. Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 24: 294–304.

    Article  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402–408.

    Article  Google Scholar 

  • Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., and Cerutti, H., 2012. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry, 75: 50–59.

    Article  Google Scholar 

  • Nicholl, D. S., Schloss, J. A., and John, P. C., 1988. Tubulin gene expression in the Chlamydomonas reinhardtii cell cycle: Elimination of environmentally induced artifacts and the measurement of tubulin mRNA levels. Journal of Cell Science, 89: 397–403.

    Google Scholar 

  • Nolan, T., Hands, R. E., and Bustin, S. A., 2006. Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1: 1559–1582.

    Article  Google Scholar 

  • O’Shaughnessy, P. J., Monteiro, A., and Fowler, P. A., 2011. Identification of stable endogenous reference genes for real-time PCR in the human fetal gonad using an external standard technique. Molecular Human Reproduction, 17: 620–625.

    Article  Google Scholar 

  • Park, S. C., Kim, Y. H., Ji, C. Y., Park, S., Jeong, J. C., Lee, H. S., and Kwak, S. S., 2012. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 7: e51502.

    Article  Google Scholar 

  • Peirson, S. N., Butler, J. N., and Foster, R. G., 2003. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Research, 31: e73.

    Article  Google Scholar 

  • Pfaffl, M. W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29: e45.

    Article  Google Scholar 

  • Pfaffl, M. W., Tichopad, A., Prgomet, C., and Neuvians, T. P., 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Best-Keeper-Excel-based tool using pair-wise correlations. Biotechnology Letters, 26: 509–515.

    Article  Google Scholar 

  • Stahlberg, A., Hakansson, J., Xian, X., Semb, H., and Kubista, M., 2004a. Properties of the reverse transcription reaction in mRNA quantification. Clinical Chemistry, 50: 509–515.

    Article  Google Scholar 

  • Ståhlberg, A., Kubista, M., and Pfaffl, M., 2004b. Comparison of reverse transcriptases in gene expression analysis. Clinical Chemistry, 50: 1678–1680.

    Article  Google Scholar 

  • Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A., and Heinen, E., 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 75: 291–295.

    Article  Google Scholar 

  • Turchetto-Zolet, A. C., Maraschin, F. S., de Morais, G. L., Cagliari, A., Andrade, C. M., Margis-Pinheiro, M., and Margis, R., 2011. Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evolutionary Biology, 11: 263.

    Article  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F., 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3: Research0034.1-0034.11.

  • Wang, Y., Tang, N., Hui, T., Wang, S., Zeng, X., Li, H., and Ma, J., 2013. Identification of endogenous reference genes for RT-qPCR analysis of plasma microRNAs levels in rats with acetaminophen-induced hepatotoxicity. Journal of Applied Toxicology, 33: 1330–1336.

    Google Scholar 

  • Wong, M. L., and Medrano, J. F., 2005. Real-time PCR for mRNA quantitation. Biotechniques, 39: 75–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhou, J., Cao, X. et al. Determination of internal controls for quantitative gene expression of Isochrysis zhangjiangensis at nitrogen stress condition. J. Ocean Univ. China 15, 137–144 (2016). https://doi.org/10.1007/s11802-016-2847-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-2847-6

Key words

Navigation