Skip to main content

Advertisement

Log in

Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Photosynthesis includes the collection of light and the transfer of solar energy using light-harvesting chlorophyll a/b-binding (LHC) proteins. In high plants, the LHC gene family includes LHCA and LHCB sub-families, which encode proteins constituting the light-harvesting complex of photosystems I and II. Zostera marina L. is a monocotyledonous angiosperm and inhabits submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of divergence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relationship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Arfan, M., Athar, H. R., and Ashraf, M., 2007. Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology, 164 (6): 685–694.

    Article  Google Scholar 

  • Ashraf, M., and Harris, P. J. C., 2013. Photosynthesis under stressful environments: An overview. Photosynthetica, 51 (2): 163–190.

    Article  Google Scholar 

  • Avenson, T. J., Ahn, T. K., and Zigmantas, D., 2008. Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. The Journal of Biological Chemistry, 283 (6): 3550–3558.

    Article  Google Scholar 

  • Caffarri, S., Frigerio, S., Olivieri, E., and Righetti, P. G., 2005. Differential accumulation of Lhcb gene products in thylakoid membranes of Zea mays plants grown under contrasting light and temperature conditions. Proteomics, 5 (3): 758–768.

    Article  Google Scholar 

  • Casal, J. J., and Yanovsky, M. J., 2005. Regulation of gene expression by light. The International Journal of Developmental Biology, 49 (56): 501–511.

    Article  Google Scholar 

  • Christensen, S., and Silverthorne, J., 2001. Origins of phytochrome-modulated Lhcb mRNA expression in seed plants. Journal of Plant Physiology, 126 (4): 1609–1618.

    Article  Google Scholar 

  • Daum, B., Nicastro, D., Austin, J., and McIntosh, J. R., 2010. Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. The Plant Cell, 22 (4): 1299–1312.

    Article  Google Scholar 

  • de Bianchi, S., DallOsto, L., Tognon, G., and Morosinotto, T., 2008. Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. The Plant Cell, 20 (4): 1012–1028.

    Article  Google Scholar 

  • Dekker, J. P., and Boekema, E. J., 2005. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica acta, 1706 (12): 12–39.

    Article  Google Scholar 

  • Dhingra, A., Bies, D. H., Lehner, K. R., and Folta, K. M., 2006. Green light adjusts the plastid transcriptome during early photomorphogenic development. Journal of Plant Physiology, 142 (3): 1256–1266.

    Article  Google Scholar 

  • Dissard, D., Nehrke, G., Reichart, G. J., and Bijma, J., 2010. Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: Results from culturing experiments with Ammonia tepida. Biogeosciences, 7 (1): 81–93.

    Article  Google Scholar 

  • Dittami, S. M., Michel, G., Collen, J., and Boyen, C., 2010. Chlorophyll-binding proteins revisited–A multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evolutionary Biology, 10: 365, DOI: 10.1186/1471-2148-10-365.

    Article  Google Scholar 

  • Elrad, D., and Grossman, A. R., 2004. A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii. Current Genetics, 45 (2): 61–75.

    Article  Google Scholar 

  • Fey, V., Wagner, R., Brautigam, K., and Pfannschmidt, T., 2005. Photosynthetic redox control of nuclear gene expression. Journal of Experimental Botany, 56 (416): 1491–1498.

    Article  Google Scholar 

  • Frida, H., and Mats, B., 1999. Photosynthetic response in Zostera marina to decreasing salinity, inorganic carbon content and osmolility. Aquatic Botany, 65: 97–104.

    Article  Google Scholar 

  • Ganeteg, U., Kulheim, C., Andersson, J., and Jansson, S., 2004. Is each light-harvesting complex protein important for plant fitness? Journal of Plant Physiology, 134 (1): 502–509.

    Article  Google Scholar 

  • Green, B. R., and Durnford, D. G., 1996. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 47: 685–714.

    Article  Google Scholar 

  • Green, B. R., Pichersky, E., and Kloppstech, K., 1991. Chlorophyll a/b-binding proteins: An extended family. Trends in Biochemical Sciences, 16 (5): 181–186.

    Article  Google Scholar 

  • Grossman, A., Manodori, A., and Snyder, D., 1990. Light-harvesting proteins of diatoms: Their relationship to the chlorophyll a/b binding proteins of higher plants and their mode of transport into plastids. Molecular and General Genetics, 224 (1): 91–100.

    Article  Google Scholar 

  • Humbeck, K., and Krupinska, K., 2003. The abundance of minor chlorophyll a/b-binding proteins CP29 and LHCI of barley (Hordeum vulgare L.) during leaf senescence is controlled by light. Journal of Experimental Botany, 54 (381): 375–383.

    Article  Google Scholar 

  • Ihalainen, J. A., Gobets, B., Sznee, K., and Brazzoli, M., 2000. Evidence for two spectroscopically different dimers of lightharvesting complex I from green plants. Biochemistry, 39 (29): 8625–8631.

    Article  Google Scholar 

  • Iyer, V., and Barnabas, A. D., 1993. Effects of varing salinity on leaves of Zostera capensis Setchell. I. Ultrastructural changes. Aquatic Botany, 46 (2): 141–153.

    Article  Google Scholar 

  • Jansson, S., 1999. A guide to the Lhc genes and their relatives in Arabidopsis. Trends in Plant Science, 4 (6): 236–240.

    Article  Google Scholar 

  • Jansson, S., Pichersky, E., Bassi, R., and Green, B., 1992. A nomenclature for the genes encoding the chlorophyll a/b binding proteins of higher plants. Plant Molecular Biology Reporter, 10: 242–253.

    Article  Google Scholar 

  • Klimmek, F., Sjodin, A., Noutsos, C., and Leister, D., 2006. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Journal of Plant Physiology, 140 (3): 793–804.

    Article  Google Scholar 

  • Kong, F., Zhou, Y., Sun, P., and Liu, L., 2013. Generation and analysis of expressed sequence tags from the salt-tolerant eelgrass species, Zostera marina. Acta Oceanologica Sinica, 32: 68–78.

    Article  Google Scholar 

  • Koziol, A. G., Borza, T., Ishida, K., and Keeling, P., 2007. Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Journal of Plant physiology, 143 (4): 1802–1816.

    Article  Google Scholar 

  • Kuhlbrandt, W., Wang, D. N., and Fujiyoshi, Y., 1994. Atomic model of plant light-harvesting complex by electron crystallography. Nature, 367 (6464): 614–621.

    Article  Google Scholar 

  • Kulheim, C., Agren, J., and Jansson, S., 2002. Rapid regulation of light harvesting and plant fitness in the field. Science, 297 (5578): 91–93.

    Article  Google Scholar 

  • Les, D. H., Cleland, M. A., and Waycott, M., 1997. Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Systematic Botany, 22 (3): 443–463.

    Article  Google Scholar 

  • Li, J., and Chua, N. H., 2010. A comprehensive understanding of plant growth and development. Current Opinion in Plant Biology, 14 (1): 1–3.

    Article  Google Scholar 

  • Liu, R., Xu, Y. H., Jiang, S. C., and Lu, K., 2013. Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signaling, require a transcription repressor, WRKY40, to balance their function. Journal of Experimental Botany, 64 (18): 5443–5456.

    Article  Google Scholar 

  • Liu, X. D., and Shen, Y. G., 2004. NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina. FEBS Letters, 569 (13): 337–340.

    Article  Google Scholar 

  • Liu, Z., Yan, H., Wang, K., Kuang, T., and Zhang, J., 2004. Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature, 428 (6980): 287–292.

    Article  Google Scholar 

  • Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25 (4): 402–408.

    Article  Google Scholar 

  • Neilson., J. A., and Durnford, D. G., 2010. Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynthesis Research, 106 (12): 57–71.

    Article  Google Scholar 

  • Nejrup, I. B., and Pedersen, M. F., 2008. Effects of salinity and water temperature on the ecological performance of Zosters marina. Aquatic Botany, 88: 239–246.

    Article  Google Scholar 

  • Nott, A., Jung. H. S., Koussevitzky, S., and Chory, J., 2006. Plastid-to-nucleus retrograde signaling. Annual Review of Plant Biology, 57: 739–759.

    Article  Google Scholar 

  • Orth, R., Carruthers, T., Dennison, W., and Duarte, C., 2006. A global crisis for seagrass ecosystems. BioOne, 56 (12): 987–996.

    Google Scholar 

  • Pascal, A. A., Liu, Z., Broess, K., and van Oort, B., 2005. Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature, 436 (7047): 134–137.

    Article  Google Scholar 

  • Peng, L., Fukao, Y., Fujiwara, M., and Takami, T., 2009. Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. The Plant Cell, 21 (11): 3623–3640.

    Article  Google Scholar 

  • Pietrzykowska, M., Suorsa, M., Semchonok, D. A., and Tikkanen, M., 2014. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. The Plant Cell, 26 (9): 3646–3660.

    Article  Google Scholar 

  • Saito, A., Shimizu, M., Nakamura, H., and Maeno, S., 2014. Fe deficiency induces phosphorylation and translocation of Lhcb1 in barley thylakoid membranes. FEBS Letters, 588 (12): 2042–2048.

    Article  Google Scholar 

  • Schmid, V. H., Cammarata, K. V., Bruns, B. U., and Schmidt, G. W., 1997. In vitro reconstitution of the photosystem I lightharvesting complex LHCI-730: Heterodimerization is required for antenna pigment organization. Proceedings of the National Academy of Sciences (USA), 94 (14): 7667–7672.

    Article  Google Scholar 

  • Seki, M., Narusaka, M., Ishida, J., and Nanjo, T., 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Journal, 31 (3): 279–292.

    Article  Google Scholar 

  • Staneloni, R. J., Rodriguez-Batiller, M. J., and Casal, J. J., 2008. Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Molecular Plant, 1 (1): 75–83.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., and Stecher, G., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28 (10): 2731–2739.

    Article  Google Scholar 

  • Tanz, S. K., Kilian, J., Johnsson, C., and Apel, K., 2012. The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LHCB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings. Plant Journal, 69 (5): 743–754.

    Article  Google Scholar 

  • Teramoto, H., Nakamori, A., Minagawa, J., and Ono, T. A., 2002. Light-intensity-dependent expression of Lhc gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Journal of Plant Physiology, 130 (1): 325–333.

    Article  Google Scholar 

  • Umate, P., 2010. Genome-wide analysis of the family of light harvesting chlorophyll a/b-binding proteins in Arabidopsis and rice. Plant Signalling & Behavior, 5 (12): 1537–1542.

    Article  Google Scholar 

  • Van Breusegem, F., Bailey-Serres, J., and Mittler, R., 2008. Unraveling the tapestry of networks involving reactive oxygen species in plants. Journal of Plant Physiology, 147 (3): 978–984.

    Article  Google Scholar 

  • Wang, Y., and Folta, K. M., 2013. Contributions of green light to plant growth and development. American Journal of Botany, 100 (1): 70–78.

    Article  Google Scholar 

  • Wen, T., Shang, H., Gao, Z., and Chen, W., 2011. Expression of lhcb3 and cao gene and transformation of phosphorylation state of thylakoid in Dunaliella salina under salt-stress condition. Chinese Journal of Applied & Environment Biology, 17: 851–854.

    Google Scholar 

  • Wientjes, E., van Amerongen, H., and Croce, R., 2013. LHCII is an antenna of both photosystems after long-term acclimation. Biochimica et Biophysica Acta, 1827 (3): 420–426.

    Article  Google Scholar 

  • Wissler, L., Codoner, F. M., Gu, J., and Reusch, T. B., 2011. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evolutionary Biology, 11: 8, DOI: 10.1186/1471-2148-11-8.

    Article  Google Scholar 

  • Zhang, Y., Liu, C., and Yang, C., 2011. Analysis of heat-induced disassembly process of three different monomeric forms of the major light-harvesting chlorophyll a/b complex of photosystem II. Photosynthesis Research, 111 (12): 103–111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanna Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Zhou, Y., Sun, P. et al. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions. J. Ocean Univ. China 15, 152–162 (2016). https://doi.org/10.1007/s11802-016-2688-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-016-2688-3

Key words

Navigation