Skip to main content
Log in

An experimental study on major element release from the sediments in the Changjiang (Yangtze River) Estuary

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

With the enhanced warming and acidification of global ocean, whether and to what extent the naturally-weathered fluvial sediment into the sea can release elements and thus influence the geochemical process and ecosystem of global ocean remain to be resolved. In this contribution, an experimental study was carried out to examine the release rates of major elements (Ca, K, Mg and Al) from the surface sediments in the Changjiang (Yangtze River) Estuary under the pH values of 4.0, 6.0 and 7.0. The two studied sediments consist primarily of quartz, plagioclase, calcite and clay minerals, with the BET (Brunauer, Emmett and Teller) surface areas of 61.7 m2 g−1 and 23.1 m2 g−1. Major elements of Ca, K, Mg and Al show different release rates under different solution pH values. With the decreasing solution pH, the release rates of Ca and K increase obviously, while the release rates of Mg and Al increase with the initial solution pH varying from 6.0 to 7.0. The different release rates of these elements are closely related to the original mineral composition of the sediments and the reaction kinetics. Based on the experimental observation, quartz and clay minerals that have low dissolution rates may dominate the major element release to the aqueous phase. This study reveals that the enhancing ocean acidification could cause considerable release of major elements from natural terrigenous sediments into the ambient marine environment, which has to be considered carefully in the future study on global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkattan, M., Oelkers, E. H., Dandurand, J. L., and Schott, J., 1997. Experimental studies of halite dissolution kinetics, 1 the effect of saturation state and the presence of trace metals. Chemical Geology, 137: 201–219.

    Article  Google Scholar 

  • Brady, P. V., and Walther, J. V., 1990. Kinetics of quartz dissolution at low temperatures. Chemical Geology, 82: 253–264.

    Article  Google Scholar 

  • Bruland, K. W., Donat, J. R., and Hutchins, D. A., 1991. Interactive influences of bioactive trace metals on biological production in oceanic water. Limnology and Oceanography, 36: 1555–1577.

    Article  Google Scholar 

  • Cai, W., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W. C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G. C., 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4: 766–770.

    Article  Google Scholar 

  • Cappuyns, V., and Swennen, R., 2005. Kinetics of element release during combined oxidation and pHstat leaching of anoxic river sediments. Applied Geochemistry, 20: 1169–1179.

    Article  Google Scholar 

  • Chaïrat, C., Schott, J., Oelkers, E. H., Lartigue, J. E., and Harouiya, N., 2007. Kinetics and mechanism of natural fluorapatite dissolution at 25°C and pH from 3 to 12. Geochimica et Cosmochimica Acta, 71: 5901–5912.

    Article  Google Scholar 

  • Chakraborty, P., Babu, P. V. R., and Sarma, V. V., 2012. A study of lead and cadmium speciation in some estuarine and coastal sediments. Chemical Geology, 294–295: 217–225.

    Article  Google Scholar 

  • Chen, C. C., Gong, G. C., and Shiah, F. K., 2007. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the word. Marine Environmental Research, 64: 399–408.

    Article  Google Scholar 

  • Chen, J. Y., and Chen, S. L., 2003. Ecological environmental changes in the Changjiang estuary and suggestions for countermeasure. Water Resources Hydropower Engineering, 34: 19–25 (in Chinese).

    Google Scholar 

  • Chen, Y., and Brantley, S. L., 1997. Temperature- and pH- dependence of albite dissolution rate at acid pH. Chemical Geology, 135: 275–292.

    Article  Google Scholar 

  • Cubillas, P., Köhler, S., Prieto, M., Chaïrat, C., and Oelkers, E. H., 2005. Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chemical Geology, 216: 59–77.

    Article  Google Scholar 

  • Doney, S. C., 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science, 328: 1525–1516.

    Article  Google Scholar 

  • Gautier, J. M., Oelkers, E. H., and Schott, J., 1994. Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150°C and pH 9. Geochimica et Cosmochimica Acta, 58: 4549–4560.

    Article  Google Scholar 

  • Gherbi, C., Bouabse, L., and Oelkers, E. H., 2010. An experimental study of lake water-sediment interaction rates. Comptes Rendus Geoscience, 342: 126–135.

    Article  Google Scholar 

  • Gislason, S. R., and Oelkers, E. H., 2003. Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochimica et Cosmochimica Acta, 67: 3817–3832.

    Article  Google Scholar 

  • Gislason, S., Oelkers, E. H., and Snorrason, Á., 2006. Role of river suspended material in the global carbon cycle. Geology, 34: 49–52.

    Article  Google Scholar 

  • Harouiya, N., Chaïrat, C., Köhler, S., Gout, R., and Oelkers, E. H., 2007. The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50°C and pH from 1 to 6. Chemical Geology, 244: 554–568.

    Article  Google Scholar 

  • Huertas, F. J., Chou, L., and Wollast, R., 1999. Mechanism of kaolinite dissolution at room temperature and pressure. Part II: Kinetic study. Geochimica et Cosmochimica Acta, 63: 3261–3275.

    Article  Google Scholar 

  • Jeandel, C., Peucker-Ehrenbrink, B., Jones, M. T., Pearce, C. R., Oleers, E. H., Godderis, Y., Lacan, F., Aumont, O., and Arsouze, T., 2011. Ocean margins: The missing term for oceanic element budgets? EOS, Transactions American Geophysical Union, 92: 217–224.

    Article  Google Scholar 

  • Jones, M. T., Pearce, C. R., Jeandel, C., Gislason, S. R., Eiriksdottir, E. S., Mavromatis, V., and Oelkers, E. H., 2012. Riverine particulate material dissolution as a significant flux of strontium to the oceans. Earth and Planetary Science Letters, 355–356: 51–59.

    Article  Google Scholar 

  • Köhler, S., Dufaud, F., and Oelkers, E. H., 2003. An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C. Geochimica et Cosmochimica Acta, 67: 3583–3594.

    Article  Google Scholar 

  • Li, D. J., Zhang, J., Huang, D. J., Wu, Y., and Liang, J., 2002. Oxygen depletion off the Changjiang (Yangtze River) Estuary. Science in China (Series D), 45: 1137–1146.

    Article  Google Scholar 

  • Oelkers, E. H., and Poitrasson, F., 2002. An experimental study of the dissolution stoichimetry and rates of a natural monazite as a function of temperature from 50 to 230°C and pH from 1.5 to 10. Chemical Geology, 191: 73–87.

    Article  Google Scholar 

  • Oelkers, E. H., Gislason, S. R., Eirlksdóttir, E. S., Jones M. T., Pearce, C. R., and Jeandel, C., 2011. The role of riverine particulate material on the global cycles of the elements. Applied Geochemistry, 26: S365–S369.

    Google Scholar 

  • Oelkers, E. H., Jones, M. T., Pearce, C. R., Jeandel, C., Eiriksdottir, E. S., and Gislason, S. R., 2012. Riverine particulate material dissolution in seawater and its implications for the global cycles of the elments. Comptes Rendus Geoscience, 344: 646–651.

    Article  Google Scholar 

  • Oelkers, E. H., Schott J., and Devidal, J. L., 1994. The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochimica et Cosmochimica Acta, 58: 2011–2024.

    Article  Google Scholar 

  • Parthasarathy, H., Dzombak, D. A., and Karamalidis, A. K., 2013. A small-scale flow-through column system to determine the rates of mineral dissolution at high temperature and pressure. Chemical Geology, 354: 65–72.

    Article  Google Scholar 

  • Pearce, C. R., Jones, M. T., Oelkers, E. H., and Pradoux, C., 2013. The effect of particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater. Earth and Planetary Science Letter, 369–370: 138–147.ss

    Article  Google Scholar 

  • Ramos, M. E., Palma, S. G., Rozalena, M., Johnston, C. T., and Huertas, F. J., 2014. Kinetics of montmorillonite dissolution,An experimental study of the effect of oxalate. Chemical Geology, 363: 283–292.

    Article  Google Scholar 

  • Reitzel, K., Jensen, H. S., and Egemose, S., 2013. pH dependent dissolution of sediment aluminum in six Danish lakes treated with aluminum. Water Research, 47: 1409–1420.

    Article  Google Scholar 

  • Rozalen, M. L., Huertas, F. J., Brady, P. V., Cama, J., Garcia, S., and Linares, J., 2008. Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25°C. Geochimica et Cosmochimica Acta, 72: 4224–4253.

    Article  Google Scholar 

  • Saito, Y., Yang, Z. S., and Hori, K., 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology, 41: 219–231.

    Article  Google Scholar 

  • Sverdrup, H., and Warfvinge, P., 1993. Calculating field weathering rates using a mechanistic geochemical model-PROFILE. Applied Geochemistry, 8: 273–283.

    Article  Google Scholar 

  • Wang, B., 2006. Cultural eutrophication in the Changjiang (Yangtze River) plume: History and perspective. Estuarine Coastal and Shelf Science, 69: 471–477.

    Article  Google Scholar 

  • Wang, H., Yang, Z., Wang, Y., Saito, Y., and Liu, J. P., 2008. Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. Journal of Hydrology, 349: 318–332.

    Article  Google Scholar 

  • Yacoub, C., Miralles, N., and Vladerrama, C., 2014. Experimental study of mobility and kinetic characterization of trace elements in contaminated sediments from a river basin in Northern Peru. Human and Ecological Risk Assessment, 21: 828–844.

    Article  Google Scholar 

  • Yadav, S. K., Chakrapani, G. J., and Gupta, M. K., 2008. An experimental study of dissolution kinetics of Calcite, Dolomite, Leucogranite and Gneiss in buffered solutions at temperature 25 and 5°C. Environmental Geology, 53: 1683–1694.

    Article  Google Scholar 

  • Yang, S. L., Belkin, I. M., Belkina, A. I., Zhao, Q. Y., Zhu, J., and Ding, P., 2003. Estuarine delta response to decline in sediment supply from the Yangtze River: Evidence of the recent four decades and expectations for the next half-century. Estuarine Coastal and Shelf Science, 57: 689–699.

    Article  Google Scholar 

  • Zhai, W., and Dai, M., 2009. On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Marine Chemistry, 117: 2–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Yang, S. An experimental study on major element release from the sediments in the Changjiang (Yangtze River) Estuary. J. Ocean Univ. China 14, 417–424 (2015). https://doi.org/10.1007/s11802-015-2772-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2772-0

Keywords

Navigation