Skip to main content
Log in

Predicting the reproduction strategies of several microalgae through their genome sequences

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Documenting the sex and sexual reproduction of the microalgae is very difficult, as most of the results are based on the microscopic observation that can be heavily influenced by genetic, physiological and environmental conditions. Understanding the reproduction strategy of some microalgae is required to breed them in large scale culture industry. Instead of direct observation of sex and sexual reproduction under microscope, the whole set or the majority of core meiosis genes may evidence the sex and sexual reproduction in the unicellular algae, as the meiosis is necessary for maintaining the genomic stability and the advantages of genetic recombination. So far, the available genome sequences and bioinformatic tools (in this study, homolog searching and phylogenetic analysis) allow us to propose that at least 20 core meiosis genes (among them ≥6 must be meiosis specific) are enough for an alga to maintain its sexual reproduction. According to this assumption and the genome sequences, it is possible that sexual reproduction was carried out by Micromonas pusilla and Cyanidioschyzon merolae, while asexual reproduction was adopted by Bigelowiella natans, Guillardia theta, Nannochloropsis gaditana, N. oceanica, Chlorella variablis, Phaeodactylum tricornutum and Thalassiosira pseudonana. This understanding will facilitate the breeding trials of some economic microalgae (e.g., N. gaditana, N. oceanica, C. variablis and P. tricornutum). However, the reproduction strategies of these microalgae need to be proved by further biological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25: 3389–3402.

    Article  Google Scholar 

  • Armbrust, E. V., 1999. Identification of a new gene family expressed during the on-set of sexual reproduction in the centric diatom Thalassiosira weissflogii. Appllied and Environmental Microbiology, 65: 3121–3128.

    Google Scholar 

  • Blanc, G., Duncan, G., Agarkova, I., Borodovsky, M., Gurnon, J., Kuo, A., Lindquist, E., Lucas, S., Pangilinan, J., Polle, J., Salamov, A., Terry, A., Yamada, T., Dunigan, D. D., Grigoriev, I. V., Claverie, J. M., and van Etten, J. L., 2010. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell, 22 (9): 2943–2955.

    Article  Google Scholar 

  • Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J. A., Brownlee, C., Cadoret, J. P., Chiovitti, A., Choi, C. J., Coesel, S., de Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kroger, N., Kroth, P. G., la Roche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Oudot-Le Secq, M. P., Napoli, C., Obornik, M., Parker, M. S., Petit, J. L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., van de Peer, Y., and Grigoriev, I. V., 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456: 239–244.

    Article  Google Scholar 

  • Brown, M. R., Jeffrey, S. W., Volkman, J. K., and Dunstan, G. A., 1997. Nutritional properties of microalgae for mariculture. Aquaculture, 151: 315–331.

    Article  Google Scholar 

  • Cha, T. S., Chen, C. F., Yee, W., Aziz, A., and Loh, S. H., 2011. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. Journal of Microbiological Methods, 84: 430–434.

    Article  Google Scholar 

  • Chen, H. L., Li, S. S., Huang, R., and Tsai, H. J., 2008. Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). Journal of Phycology, 44: 768–776.

    Article  Google Scholar 

  • Chepurnov, V. A., and Mann, D. G., 1997. Variation in the sexual behavior of natural clones of Achnanthes longipes (Bacillariophyta). European Journal of Phycology, 32: 2147–2154.

    Article  Google Scholar 

  • Chepurnov, V. A., Mann, D. G., Sabbe, K., and Vyverman, W., 2004. Experimental studies on sexual reproduction in diatoms. International Review of Cytology, 237: 91–154.

    Article  Google Scholar 

  • Chisti, Y., 2007. Biodiesel from microalgae. Biotechnology Advances, 25: 294–306.

    Article  Google Scholar 

  • Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., Allen, A. E., Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J. M., Badger, J. H., Beszteri, B., Billiau, K., Bonnet, E., Bothwell, J. H., Bowler, C., Boyen, C., Brownlee, C., Carrano, C. J., Charrier, B., Cho, G. Y., Coelho, S. M., Collén, J., Corre, E., da, Silva, C., Delage, L., Delaroque, N., Dittami, S. M., Doulbeau, S., Elias, M., Farnham, G., Gachon, C. M., Gschloessl, B., Heesch, S., Jabbari, K., Jubin, C., Kawai, H., Kimura, K., Kloareg, B., Küpper, F. C., Lang, D., Le Bail, A., Leblanc, C., Lerouge, P., Lohr, M., Lopez, P. J., Martens, C., Maumus, F., Michel, G., Miranda-Saavedra, D., Morales, J., Moreau, H., Motomura, T., Nagasato, C., Napoli, C. A., Nelson, D. R., Nyvall-Collén, P., Peters, A. F., Pommier, C., Potin, P., Poulain, J., Quesneville, H., Read, B., Rensing, S. A., Ritter, A., Rousvoal, S., Samanta, M., Samson, G., Schroeder, D. C., Ségurens, B., Strittmatter, M., Tonon, T., Tregear, J. W., Valentin, K., von Dassow, P., Yamagishi, T., van de Peer, Y., and Wincker, P., 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465: 617–621.

    Article  Google Scholar 

  • Coelho, S. M., Scornet, D., Rousvoal, S., Peters, N. T., Dartevelle, L., Peters, A. F., and Cock, J. M., 2012. Ectocarpus: A model organism for the brown algae. Cole Spring Harbor Protocols, 2012: 193–198.

    Google Scholar 

  • Cooper, M. A., Adam, R. D., Worobey, M., and Sterling, C. R., 2007. Population genetics provides evidence for recombination in Giardia. Current Biology, 17 (22): 1984–1988.

    Article  Google Scholar 

  • Curtis, B. A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., Arias, M. C., Ball, S. G., Gile, G. H., Hirakawa, Y., Hopkins, J. F., Kuo, A., Rensing, S. A., Schmutz, J., Symeonidi, A., Elias, M., Eveleigh, R. J., Herman, E. K., Klute, M. J., Nakayama, T., Oborník, M., Reyes-Prieto, A., Armbrust, E. V., Aves, S. J., Beiko, R. G., Coutinho, P., Dacks, J. B., Durnford, D. G., Fast, N. M., Green, B. R., Grisdale, C. J., Hempel, F., Henrissat, B., Höppner, M. P., Ishida, K. I., Kim, E., Kořený, L., Kroth, P. G., Liu, Y., Malik, S. B., Maier, U. G., McRose, D., Mock, T., Neilson, J. A., Onodera, N. T., Poole, A. M., Pritham, E. J., Richards, T. A., Rocap, G., Roy, S. W., Sarai, C., Schaack, S., Shirato, S., Slamovits, C. H., Spencer, D. F., Suzuki, S., Worden, A. Z., Zauner, S., Barry, K., Bell, C., Bharti, A. K., Crow, J. A., Grimwood, J., Kramer, R., Lindquist, E., Lucas, S., Salamov, A., McFadden, G. I., Lane, C. E., Keeling, P. J., Gray, M. W., Grigoriev, I. V., and Archibald, J. M., 2012. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492 (7427): 59–65.

    Article  Google Scholar 

  • de Jesus Raposo, M. F., de Morais, R. M. S. C., and de Morais, A. M. M. B., 2013. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Marine Drugs, 11: 233–252.

    Article  Google Scholar 

  • de Riso, V., Raniello, R., Maumus, F., Rogato, A., Bowler, C., and Falciatore, A., 2009. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Research, 37: e96.

    Article  Google Scholar 

  • Donaldson, M. E., and Saville, B. J., 2008. Bioinformatic identification of Ustilago maydis meiosis genes. Fungal Genetic and Biology, 45: S47–53.

    Article  Google Scholar 

  • Falciatore, A., and Bowler, C., 2002. Revealing the molecular secrets of marine diatoms. Annual Review: Plant Biology, 53: 109–130.

    Google Scholar 

  • Galloway, R. E., 1990. Selective condition and isolation of mutants in salt-tolerant, lipid-producing microalgae. Journal of Phycology, 26: 752–760.

    Article  Google Scholar 

  • Gouveia, L., Batista, A. P., Sousa, I., Raymundo, A., and Bandarra, N. M., 2008. Microalgae in novel food products. In: Food Chemistry Research Developments. Papadopoulos, K. N. ed., Nova Science Publishers Inc., New York, 75–111.

    Google Scholar 

  • Harun, R., Singh, M., Forde, G. M., and Danquah, M. K., 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14: 1037–1047.

    Article  Google Scholar 

  • Hense, I., and Beckmann, A., 2006. Towards a model of cyanobacteria life cycle-effects of growing and resting stages on bloom formation of N2-fixing species. Ecological Modelling, 195: 205–218.

    Article  Google Scholar 

  • Holtermann, K. E., Bates, S. S., Trainer, V. L., Odell, A., and Armbrust, E. V., 2010. Mass sexual reproduction in the toxigenic diatoms Pseudo-Nitzschia australis and P. pungens (Bacillariophyceae) on the Washington coast, USA. Journal of Phycology, 46: 41–52.

    Article  Google Scholar 

  • Huang, K., and Beck, C. F., 2003. Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America, 100: 6269–6274.

    Article  Google Scholar 

  • Jinkerson, R. E., Radakovits, R., and Posewitz, M. C., 2013. Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered, 4 (1): 37–43.

    Article  Google Scholar 

  • Kilian, O., Benemann, C. S. E., Niyogi, K. K., and Vick, B., 2011. High efficiency homologous recombination in the oilproducing alga Nannochloropsis sp. Proceedings of the National Academy of Sciences, 108: 21265–21269.

    Article  Google Scholar 

  • Koester, J. A., Brawley, S. H., Karp-Boss, L., and Mann, D. G., 2007. Sexual reproduction in the marine centric diatom Ditylum brightwellii (Bacillariophyta). European Journal of Phycology, 42: 4351–4366.

    Article  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G., 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 2947–2948.

    Article  Google Scholar 

  • Maddison, W. P., and Maddison, D. R., 2011. Mesquite: A modular system for evolutionary analysis, version 2.75. http://mesquiteproject.org.

    Google Scholar 

  • Malik, S. B., Pightling, A. W., Stefaniak, L. M., Schurko, A. M., and Logsdon, J. M., 2008. An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One, 3 (8): e2879.

    Article  Google Scholar 

  • Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., Maréchal-Drouard, L., Marshall, W. F., Qu, L. H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S. M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C. L., Cognat, V., Croft, M. T., Dent, R., Dutcher, S., Fernández, E., Fukuzawa, H., González-Ballester, D., González-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P. A., Lemaire, S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S. V., Paulsen, I. T., Pazour, G., Purtons, S., Ral, J. P., Riaño-Pachón, D. M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer, J., Balk, J., Bisova, K., Chen, C. J., Elias, M., Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long, J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, AM., Yang, P., Ball, S., Bowler, C., Dieckmann, CL., Gladyshev V. N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo, Y., Martínez, D., Ngau, W. C., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D. S., and Grossman, A. R., 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318 (5848): 245–250.

    Article  Google Scholar 

  • Moestrup, Ø., and Sengco, M., 2001. Ultrastructural studies on Bigelowiella natans, gen. et sp. nov., a chlorarachniophyte flagellate. Journal of Phycology, 37: 624–646.

    Article  Google Scholar 

  • Normark, B. B., Judson, O. P., and Moran, N. A., 2003. Genomic signatures of ancient asexual lineages. Biological Journal of the Linnean Society, 79: 69–84.

    Article  Google Scholar 

  • Nozaki, H., Takano, H., Misumi, O., Terasawa, K., Matsuzaki, M., Maruyama, S., Nishida, K., Yagisawa, F., Yoshida, Y., Fujiwara, T., Takio, S., Tamura, K., Chung, S. J., Nakamura, S., Kuroiwa, H., Tanaka, K., Sato, N., and Kuroiwa, T., 2007. A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biology, 5: 28.

    Article  Google Scholar 

  • Qu, X. M., Mi, W. Y., Zhu, B. H., Yang, G. P., Li, S. D, and Pan, K. H., 2013. Applicability of berbicide quizalofop-pethyl to the screening of lipid rich Nannochloropsis oceanica. Journal of Ocean University of China, 43 (6): 25–28 (in Chinese with English abstract).

    Google Scholar 

  • Pan, K., Qin, J., Li, S., Dai, W., Zhu, B., Jin, Y., Yu, W., Yang, G., and Li, D., 2011. Nuclear monoploidy and asexual propagation of Nannochloropsis oceanica (Eustigmatophycaea) as revealed by its genome sequence. Journal of Phycology, 47: 1425–1432.

    Article  Google Scholar 

  • Priyadarshani, I., and Rath, B., 2012. Commercial and industrial applications of micro algae–A review. Journal of Algal Biomass Utilization, 3: 89–100.

    Google Scholar 

  • Prochnik, S. E., Umen, J., Nedelcu, A. M., Hallmann, A., Miller, S. M., Nishi, I., Ferris, P., Kuo, A., Mitros, T., Fritz-Laylin, L. K., Hellsten, U., Chapman, J., Simakov, O., Rensing, S. A., Terry, A., Pangilinan, J., Kapitonov, V., Jurka, J., Salamov, A., Shapiro, H., Schmutz, J., Grimwood, J., Lindquist, E., Lucas, S., Grigoriev, I. V., Schmitt, R., Kirk, D., and Rokhsar, D. S., 2010. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science, 329 (5988): 223–226.

    Article  Google Scholar 

  • Radakovits, R., Jinkerson, R. E., Fuerstenberg, S. I., Tae, H., Settlage, R. E., Boore, J. L., and Posewitz, M. C., 2012. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nature Communications, 3: 686.

    Article  Google Scholar 

  • Ramesh, M. A., Malik, S. B., and Logsdon, J. M., 2005. A phylogenomic inventory of meiotic genes: Evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology, 15: 185–191.

    Google Scholar 

  • Read, B. A., Kegel, J., Klute, M. J., Kuo, A., Lefebvre, S. C., Maumus, F., Mayer, C., Miller, J., Monier, A., Salamov, A., Young, J., Aguilar, M., Claverie, J. M., Frickenhaus, S., Gonzalez, K., Herman, E. K., Lin, Y. C., Napier, J., Ogata, H., Sarno, A. F., Shmutz, J., Schroeder, D., de Vargas, C., Verret, F., von Dassow, P., Valentin, K., de Peer, Y. V., Wheeler, G., Allen, A. E., Bidle, K., Borodovsky, M., Bowler, C., Brownlee, C., Cock, J. M., Elias, M., Gladyshev, V. N., Groth, M., Guda, C., Hadaegh, A., Iglesias-Rodriguez, D., Jenkins, J., Jones, B. M., Lawson, T., Leese, F., Lindquist, E., Lobanov, A., Lomsadze, A., Lucas, S., Malik, S. B., Marsh, M. E., Mock, T., Mueller-Roeber, B., Pagarete, A., Parker, M., Probert, I., Quesneville, H., Raines, C., Rensing, S. A., Riano-Pachon, D. M., Richier, S., Rokitta, S., Shiraiwa, Y., Soanes, D. M., van der Giezen, M., Wahlund, T. M., Williams, B., Wilson, W., Wolfe, G., Wurch, L. L., Dacks, J. B., Delwiche, C. F., Dyhrman, S. T., Glöckner, G., John, U., Richards, T., Worden, A. Z., Zhang, X., and Grigoriev, I. V., 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature, 499: 209–213.

    Article  Google Scholar 

  • Romera, E., Gonzalez, F., Balleste, A., Blazquez, M. L., and Munoz, J. A., 2008. Biosorption of Cd, Ni, and Zn with mixtures of different types of algae. Environmental Engineering Science, 25: 999–1008.

    Article  Google Scholar 

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P., 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3): 539–542.

    Article  Google Scholar 

  • Sabbe, K., Chepurnov, V. A., Vyverman, W., and Mann, D. G., 2004. Apomixis in Achnanthes (Bacillariophyceae); development of a model system for diatom reproductive biology. European Journal of Phycology, 39: 3327–3341.

    Article  Google Scholar 

  • Schurko, A. M., and Logsdon, J. M., 2008. Using a meiosis detection toolkit to investigate ancient asexual ‘scandals’ and the evolution of sex. Bioessays, 30 (6): 579–589

    Article  Google Scholar 

  • Schurko, A. M., Logsdon, J. M., and Eads, B. D., 2009. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. BMC Evolution Biology, 9: 78.

    Article  Google Scholar 

  • Shi, J., Podola, B., and Melkonian, M., 2007. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: An experimental study. Journal of Applied Phycology, 19: 417–423.

    Article  Google Scholar 

  • Siaut, M., Heijde, M., Mangogna, M., Montsant, A., Coesel, S., Allen, A., Manfredonia, A., Falciatore, A., and Bowler, C., 2007. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene, 406: 23–35.

    Article  Google Scholar 

  • von Dassow, P., Chepurnov, V. A., and Armbrust, E. V., 2006. Relationship between growth rate, cell size, and induction of spermatogenesis in the centric diatom Thalassiosira weissflogii (Bacillariophyta). Journal of Phycology, 42: 887–899.

    Article  Google Scholar 

  • Welsh, E. A., Liberton, M., Stocke, L. J., Loh, T., Elvitigala, T., Wang, C., Wollam, A., Fulton, R. S., Clifton, S. W., Jacobs, J. M., Aurora, R., Ghosh, B. K., Sherman, L. A., Smith, R. D., Wilson, R. K., and Pakrasi, H. B., 2008. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proceedings of the National Academy of Sciences of the United States of America, 105: 15094–15099.

    Article  Google Scholar 

  • Whelan, S., and Goldman, N., 2001. A general empirical model of protein172 BIBLIOGRAPHY evolution derived from multiple protein families using a maximum likelihood approach. Molecular Biology and Evolution, 18: 691–699.

    Article  Google Scholar 

  • Worden, A. Z., Lee, J. H., Mock, T., Rouzé, P., Simmons, M. P., Aerts, A. L., Allen, A. E., Cuvelier, M. L., Derelle, E., Everett, M. V., Foulon, E., Grimwood, J., Gundlach, H., Henrissat, B., Napoli, C., McDonald, S. M., Parker, M. S., Rombauts, S., Salamov, A., Von, Dassow, P., Badger, J. H., Coutinho, P. M., Demir, E., Dubchak, I., Gentemann, C., Eikrem, W., Gready, J. E., John, U., Lanier, W., Lindquist, E. A., Lucas, S., Mayer, K. F., Moreau, H., Not, F., Otillar, R., Panaud, O., Pangilinan, J., Paulsen, I., Piegu, B., Poliakov, A., Robbens, S., Schmutz, J., Toulza, E., Wyss, T., Zelensky, A., Zhou, K., Armbrust, E. V., Bhattacharya, D., Goodenough, U. W., van de Peer, Y., and Grigoriev, I. V., 2009. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science, 324 (5924): 268–272.

    Article  Google Scholar 

  • Zaslavskaia, L. A., Lippmeier, J. C., Kroth, P. G., Grossman, A. R., and Apt, K. E., 2000. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. Journal of Phycology, 36: 379–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanpin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Yang, G. Predicting the reproduction strategies of several microalgae through their genome sequences. J. Ocean Univ. China 14, 491–502 (2015). https://doi.org/10.1007/s11802-015-2442-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-015-2442-2

Keywords

Navigation