Skip to main content
Log in

QSAR for photodegradation activity of polycyclic aromatic hydrocarbons in aqueous systems

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The relationship between chemical structures and photodegradation activity of 12 PAHs is studied using DFT and HF methods, and stepwise multiple linear regression analysis method. The equilibrium geometries and vibration frequency have been investigated by considering Solvent effects using a selfconsistent reaction field based on the polarizable continuum model. With DFT and HF methods, different quantum chemical structural descriptors are obtained by quantum chemical calculation and the results with DFT method are better for QSAR model. It is concluded that the photodegradation activity is closely related to its molecular structure. In the regression analysis, the main factors affecting photodegradation rate include the energy of the highest occupied orbital EHOMO and the number of six-carbon benzene ring N1, and the QSAR model successfully established is logk b = 6.046 + 54.830EHOMO + 0.272N1. Statistical evaluation of the developed QSAR shows that the relationships are statistically significant and the model has good predictive ability. EHOMO is the most important factor influcing the photodegradation of PAHs, because the higher EHOMO is, the more easily electron will be excited and the more easily molecular will be degraded. Comparison of the photodegradation of PAHs with their biodegradation shows that the committed step of biodegradation is that the effects of microorganisms make the chemical bond break, while in the committed step of photodegradation PAHs eject electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barone, V., Cossi, M., and Tomasi, J., 1998. Geometry optimization of molecular structures in solution by the polarizable continuum model. Journal of Computational Chemistry, 19: 404–417.

    Article  Google Scholar 

  • Chen, J., Peijnenburg, W., Quan, X., Che, S., Martens, D., Schramm, K. W., and Kettrup, A., 2001. Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight? Environmental Pollution, 114: 137–143.

    Article  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, J. T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., 2003. Gaussian 03. Revision B.05. Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  • Fasnacht, M. P., and Blough, N. V., 2002. Aqueous photodegradation of polycyclic aromatic hydrocarbon. Environmental Science and Technology, 36: 4364–4369.

    Article  Google Scholar 

  • Grimmer, G., and Misfeld, J., 1983. Environmental carcinogens: A risk for man? Concept and strategy of the identification of carcinogens in the environment. In: Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons, Chemistry, Occurrence, Biochemistry, Carcinogenicity. Grimmer, G., ed., CRC Press, Boca Raton, FL, 1–26.

    Google Scholar 

  • Grimmer, G., and Pott, F., 1983. Occurrence of PAH. In: Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons, Chemistry, Occurrence, Biochemistry, Carcinogenicity. Grimmer, G., ed., CRC Press, Boca Raton, FL, 61–128.

    Google Scholar 

  • Jones, R., 1984. Physical and Mechanistic Organic Chemistry. Cambridge University Press, Cambridge, 94–114.

    Google Scholar 

  • James, T. H., 1985. Chemical reaction dynamics in solution. Annual Review of Physical Chemistry, 36: 573–597.

    Article  Google Scholar 

  • Lu, G. N., Dang, Z., Tao, X. Q., and Zhang, D. C., 2005. Quantum chemistry study on photolysis activity of polycyclic aromatic hydrocarbons. Environmental Chemistry, 24(4): 459–462.

    Google Scholar 

  • Mekenyan, O. G., Ankley, G. T., Veith, G. D., and Call, D. J., 1994. QSARs for photoinduced toxicity: 1. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere, 28: 567–582.

    Article  Google Scholar 

  • Reichardt, C., 1990. Solvent Effects in Organic Chemistry. Wiley-VCH, Marburg, 147–181.

    Google Scholar 

  • Simkin, B. Y., and Sheikhet, I., 1995. Quantum Chemical and Statistical Theory of Solutions: A Computational Approach. Ellis Horwood, London, 1–44.

    Google Scholar 

  • Smith, J. H., Mabey, W. R., Bahonos, N., Holt, B. R., Lee, S. S., Chou, T. W., Venberger, D. C., and Mill, T., 1979. Environmental Pathways of Selected Chemicals in Fresh Water Systems: Part II. Laboratory Studies (Interagency Energy-Environment Research Report EPA-600/7-78-074). Environmental Research Laboratory Office of Research and Development, US Environmental Protection Agency, Athens, GA.

    Google Scholar 

  • Sun, P. Y., Gao, Z. H., Wang, X. P., Zhou, Q., Zhao, Y. H., and Li, G. M., 2011. Application of a step-by-step fingerprinting identification method on a spilled oil accident in the Bohai Sea area. Journal of Ocean University of China, 10(1): 35–41.

    Article  Google Scholar 

  • Sundberg, R. J., and Carey, F. A., 2007. Advanced Organic Chemistry: Structure and Mechanisms. Springer, New York, 359–376.

    Google Scholar 

  • Sarwar, M. G., Dragisic, B., Salsberg, L. J., Gouliaras, C., and Taylor, M. S., 2010. Journal of the American Chemical Society, 132(5): 1646–1653.

    Article  Google Scholar 

  • Wang, Y., Li X. G., Peng, X. W., Tang, X. L., and Deng, X. Y., 2012. Optimization of sample pretreatment for determination of polycyclic aromatic hydrocarbons in estuarine sediments by gas chromatography. Journal of Ocean University of China, 11(2): 159–164.

    Article  Google Scholar 

  • Xia, S. W., Mao Y. P., Xue, Q. Q., and Yu, L. M., 2011, QSAR and molecular design of some quinoline derivatives as antimicrobial. Chemical Journal of Chinese Universities, 32(10): 2415–2420.

    Google Scholar 

  • Xu, X., Li, X. G., and Sun, S. W., 2012. A QSAR study on the biodegradation activity of PAHs in aged contaminated sediments. Chemometrics and Intelligent Laboratory Systems, 114: 50–55.

    Article  Google Scholar 

  • Zepp, R. G., and Schlotzhauer, P. F., 1979. In: Polynuclear Aromatic Hydrocarbons. Jones, P. W., and Leber, P., eds., Ann Arbor Science Publishers, Ann Arbor, MI, 141–158.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Li, X. QSAR for photodegradation activity of polycyclic aromatic hydrocarbons in aqueous systems. J. Ocean Univ. China 13, 66–72 (2014). https://doi.org/10.1007/s11802-014-2038-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-2038-2

Key words

Navigation