Skip to main content
Log in

A homogeneous linear estimation method for system error in data assimilation

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cycle, which is different from the state augmentation methods proposed in previous literatures. The new method provides a good estimation for the model bias of some specific variables, such as sea level pressure (SLP). A series of numerical experiments with EnKF are performed to examine the new method under a severe weather condition. Results show the positive effect of the method on the forecasting of circulation pattern and meso-scale systems, and the reduction of analysis errors. The background error covariance structures of surface variables and the effects of model system bias on EnKF are also studied under the error covariance structures and a new concept ‘correlation scale’ is introduced. However, the new method needs further evaluation with more cases of assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. L., 1997. The impact of dynamical constraints on the selection of initial conditions for ensemble predictions: Low-order perfect model results. Monthly Weather Review, 125: 2969–2983.

    Article  Google Scholar 

  • Anderson, J. L., Wyman, B., Zhang, S. Q., and Hoar, T., 2005. Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system. Journal of the Atmospheric Sciences, 62: 2925–2938.

    Article  Google Scholar 

  • Baek, S. J., Hunt, B. R., Kalnay, E., Ott, E., and Szunyogh, I., 2006. Local ensemble Kalman filtering in the presence of model bias. Tellus A, 58: 293–306.

    Article  Google Scholar 

  • Bell, M. J., Martin, M. J., and Nichols, N. K., 2004. Assimilation of data into an ocean model with systematic errors near the equator. Quarterly Journal of the Royal Meteorological Society, 130: 873–893.

    Article  Google Scholar 

  • Betts, A. K., and Miller, M. J., 1986. A new convective adjustment scheme part II: single column tests using GATE wave, BOMEX, ATEX and artic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, 12: 693–709

    Google Scholar 

  • Burgers, G., Leeuwen, P. J., and Evensen, G., 1998. Analysis scheme in the ensemble Kalman filter. Monthly Weather Review, 126: 1719–1724.

    Article  Google Scholar 

  • Chen, F., and Dudhia, J., 2001. Coupling an advanced land surface hydrology model with the Penn State/NCAR MM5 modeling system. Part 1: Model description and implementation. Monthly Weather Review, 129: 569–586.

    Article  Google Scholar 

  • Chou, J. F., 2007. An innovative road to numerical weather prediction-from initial value problem to inverse problem. Acta Meteorlogica Sinica, 65: 673–682.

    Google Scholar 

  • Dee, D. P., 2005. Bias and data assimilation. Quarterly Journal of the Royal Meteorological Society, 131: 3323–3343.

    Article  Google Scholar 

  • Dee, D. P., and Todling, R., 2000. Data assimilation in the presence of forecast bias: the geos moisture analysis. Monthly Weather Review, 128: 3268–3282.

    Article  Google Scholar 

  • Dirren, S., Torn, R. D., and Hakim, G. J., 2007. A data assimilation case study using a limited-area ensemble Kalman filter. Monthly Weather Review, 135: 1455–1473.

    Article  Google Scholar 

  • Dowell, D. C., Zhang, F. Q., Wicker, L. J., Snyder, C., and Crook, N. A., 2004. Wind and temperature retrievals in the 17 may 1981 arcadia, oklahoma, supercell: ensemble Kalman filter experiments. Monthly Weather Review, 132: 1982–2005.

    Article  Google Scholar 

  • Ehrendorfer, M., and Errico, R. M., 1995. Mesoscale predictability and the spectrum of optimal perturbations. Journal of the Atmospheric Sciences, 52: 3475–3500.

    Google Scholar 

  • Ehrendorfer, M., and Tribbia, J. J., 1997. Optimal prediction of forecast error covariances through singular vectors. Journal of the Atmospheric Sciences, 54: 286–313.

    Article  Google Scholar 

  • Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99: 10143–10162.

    Article  Google Scholar 

  • Evensen, G., 2003. The ensemble kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics, 53: 343–367.

    Article  Google Scholar 

  • Evensen, G., 2004. Sample strategies and square root analysis schemes for EnKF. Ocean Dynamics, 54: 539–560.

    Article  Google Scholar 

  • Fisher, 2001. Assimilation techniques: Approximate Kalman Filters and singular vectors. http://www.ecmwf.int/newsevents/training/lecture_notes/pdf_files/ASSIM/Kalman.pdf.

    Google Scholar 

  • Fujita, T., Stensrud, D. J., and Dowell, D. C., 2007. Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties. Monthly Weather Review, 135: 1846–1868.

    Article  Google Scholar 

  • Gaspari, G., and Cohn, S. E., 1998. Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125: 723–757.

    Article  Google Scholar 

  • Hamill, T. M., Whitaker, J. S., and Snyder, C., 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Monthly Weather Review, 129: 2776–2790.

    Article  Google Scholar 

  • Harris, B. A., and Kelly, G., 2001. A satellite radiance-bias correction scheme for data assimilation. Quarterly Journal of the Royal Meteorological Society, 127: 1453–1468.

    Article  Google Scholar 

  • Houtekamer, P. L., 1995. The construction of optimal perturbations. Monthly Weather Review, 123: 2888–2898.

    Article  Google Scholar 

  • Houtekamer, P. L., and Derome, J., 1995. Methods for ensemble prediction. Monthly Weather Review, 123: 2181–2196.

    Article  Google Scholar 

  • Houtekamer, P. L., and Mitchell, H. L., 1998. Data assimilation using an ensemble Kalman filter technique. Monthly Weather Review, 126: 796–811.

    Article  Google Scholar 

  • Houtekamer, P. L., and Mitchell, H. L., 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Review, 129: 123–137.

    Article  Google Scholar 

  • Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L., and Hansen, B., 2005. Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Monthly Weather Review, 133: 604–620.

    Article  Google Scholar 

  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further development of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122: 927–945.

    Article  Google Scholar 

  • Keppenne, C. L., Rienecker, M. M., Kurkowski, N. P., and Adamec, D. A., 2005. Ensemble Kalman filter assimilation of temperature and altimeter data with bias correction and application to seasonal prediction. Nonlinear Processes in Geophysics, 12: 491–503.

    Article  Google Scholar 

  • Mellor, G. L., and Yamada T., 1974: A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31: 1791–1806.

    Article  Google Scholar 

  • Mellor, G. L., and Yamada T., 1982: Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20: 851–875.

    Article  Google Scholar 

  • Meng, Z., and Zhang, F., 2007. Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Monthly Weather Review, 135: 1403–1423.

    Article  Google Scholar 

  • Mitchell, H. L., and Houtekamer, P. L., 2000. An adaptive ensemble Kalman filter. Monthly Weather Review, 128: 416–433.

    Article  Google Scholar 

  • Mitchell, H. L., Houtekamer, P. L., and Pellerin, G., 2002. Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Monthly Weather Review, 130: 2791–2808.

    Article  Google Scholar 

  • Nutter, P., Stensrud, D., and Xue, M., 2004a. Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. Monthly Weather Review, 132: 2358–2377.

    Article  Google Scholar 

  • Nutter, P., Xue, M., and Stensrud, D., 2004b. Application of lateral boundary condition perturbations to help restore dispersion in limited-area ensemble forecasts. Monthly Weather Review, 132: 2378–2390.

    Article  Google Scholar 

  • Torn, R. D., Hakim, G. J., and Snyder, C., 2006. Boundary conditions for limited-area ensemble Kalman filters. Monthly Weather Review, 134: 2490–2502.

    Article  Google Scholar 

  • Torn, R. D., and Hakim, G. J., 2008. Performance characteristics of a pseudo-operational ensemble Kalman filter. Monthly Weather Review, 136: 3947–3963.

    Article  Google Scholar 

  • Toth, Z., and Kalnay, E., 1997. Ensemble forecasting at ncep and the breeding method. Monthly Weather Review, 125: 3297–3319.

    Article  Google Scholar 

  • Wei, M., Toth, Z., Wobus, R., Zhu, Y. J., Bishop, C. H., and Wang, X. G., 2006. Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus A, 58: 28–44.

    Article  Google Scholar 

  • Whitaker, J. S., and Hamill, T. M., 2002. Ensemble data assimilation without perturbed observations. Monthly Weather Review, 130: 1913–1924.

    Article  Google Scholar 

  • Yang, X. X., Li, C. H., Yang, C. F., Tai, Q. G., Chen, Y. K., and Zhou, X. S., 2007. Analysis of a squall line event on 28 April 2006 in Shandong province. Meteorological Monthly, 33: 74–81.

    Google Scholar 

  • Zhang, F., Snyder, C., and Sun, J., 2004. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Monthly Weather Review, 132: 1238–1253.

    Article  Google Scholar 

  • Zhu, L. L., Wu, Z. M., Tai, Q. G., Wu, W., and Zhang, J. Y., 2009. Analysis of gravity wave characteristics of a strong squall line process in April 2006 in Shandong province. Journal of Tropical Meteorology, 25: 465–474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wu or Shanhong Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Wu, Z., Gao, S. et al. A homogeneous linear estimation method for system error in data assimilation. J. Ocean Univ. China 12, 335–344 (2013). https://doi.org/10.1007/s11802-013-1918-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-013-1918-1

Key words

Navigation