Skip to main content

Model Error Representations Using the Covariance Inflation Methods in Ensemble Data Assimilation System

  • Chapter
  • First Online:
Numerical Weather Prediction: East Asian Perspectives

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 168 Accesses

Abstract

Ensemble data assimilation estimates the initial conditions and the flow-dependent background error covariance using observations and ensemble forecasts. The ensemble background error covariance represents the model uncertainty, but it is usually underestimated due to insufficient ensemble size and model errors. Consequently, analysis overtrusts the model forecasts and ignores observations. To solve this problem, we implemented the stochastically perturbed hybrid tendencies scheme to the local ensemble transform Kalman filter in a global numerical weather prediction model—the Korean Integrated Model. It describes the model uncertainties from the computational representations of underlying partial differential equations and the imperfect physical parameterizations, simultaneously. As a result, the new stochastic perturbation scheme leads to an increase in ensemble spread and a decrease in the ensemble mean error, especially in the troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JL, Anderson SL (1999) A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev 127:2741–2758

    Article  Google Scholar 

  • Berner J, Shutts GJ, Leutbecher M et al (2009) A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J Atmos Sci 66:603–626

    Article  Google Scholar 

  • Bouttier F, Vié B, Nuissier O et al (2012) Impact of stochastic physics in a convection-permitting ensemble. Mon Weather Rev 140:3706–3721

    Article  Google Scholar 

  • Bowler NE, Clayton AM, Jardak M et al (2017) Inflation and localization tests in the development of an ensemble of 4D-ensemble variational assimilations. Q J R Meteorol Soc 143:1280–1302

    Article  Google Scholar 

  • Buizza R, Miller M, Palmer TN (1999) Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q J R Meteorol Soc 125:2887–2908

    Article  Google Scholar 

  • Draper CS (2021) Accounting for land model uncertainty in numerical weather prediction ensemble systems: toward ensemble-based coupled land-atmosphere data assimilation. J Hydrometeorol 22:2089–2104

    Google Scholar 

  • Duc L, Saito K, Hotta D (2020) Analysis and design of covariance inflation methods using inflation functions. Part 1: theoretical framework. Q J R Meteorol Soc 146:3638–3660

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • Hong SY, Kwon YC, Kim TH et al (2018) The Korean Integrated Model (KIM) system for global weather forecasting. Asia Pac J Atmos Sci 54:267–292

    Article  Google Scholar 

  • Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev 126:796–811

    Article  Google Scholar 

  • Hunt BR, Kostelich EJ, Szunyogh I (2007) Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D 230:112–126

    Article  Google Scholar 

  • Isaksen L, Bonavita M, Buizza R et al (2010) Ensemble of data assimilations at ECMWF. ECMWF Tech Memo, p 45

    Google Scholar 

  • Kang JH, Chun HW, Lee S et al (2018) Development of an observation processing package for data assimilation in KIAPS. Asia Pac J Atmos Sci 54:303–318

    Article  Google Scholar 

  • Kim JEE, Koo MS, Yoo C et al (2021) Seasonal performance of a nonhydrostatic global atmospheric model on a cubed-sphere grid. Earth Space Sci. https://doi.org/10.1029/2021EA001643

    Article  Google Scholar 

  • Kleist DT, Ide K (2015) An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part I: system description and 3D-hybrid results. Mon Weather Rev 143:433–451

    Article  Google Scholar 

  • Koo MS, Hong SY (2014) Stochastic representation of dynamic model tendency: formulation and preliminary results. Asia Pac J Atmos Sci 50:497–506

    Article  Google Scholar 

  • Kotsuki S, Ota Y, Miyoshi T (2017) Adaptive covariance relaxation methods for ensemble data assimilation: experiments in the real atmosphere. Q J R Meteorol Soc 143:2001–2015

    Article  Google Scholar 

  • Leutbecher M, Lock SJ, Ollinaho P et al (2017) Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. Q J R Meteorol Soc 143:2315–2339

    Article  Google Scholar 

  • Lim S, Koo MS, Kwon IH et al (2020) Model error representation using the stochastically perturbed hybrid physical-dynamical tendencies in ensemble data assimilation system. Appl Sci. https://doi.org/10.3390/app10249010

    Article  Google Scholar 

  • Liu J, Fertig EJ, Li H et al (2008) Comparison between local ensemble transform Kalman filter and PSAS in the NASA finite volume GCM-perfect model experiments. Nonlinear Process Geophys 15:645–659

    Article  Google Scholar 

  • Liu J, Yang ZL, Jia B et al (2023) Elucidating dominant factors affecting land surface hydrological simulations of the community land model over China. Adv Atmos Sci 40:235–250

    Article  Google Scholar 

  • Luo X, Hoteit I (2013) Covariance inflation in the ensemble Kalman filter: a residual nudging perspective and some implications. Mon Weather Rev 141:3360–3368

    Article  Google Scholar 

  • Lupo KM, Torn RD, Yang SC (2020) Evaluation of stochastic perturbed parameterization tendencies on convective-permitting ensemble forecasts of heavy rainfall events in New York and Taiwan. Weather Forecast 35:5–24

    Article  Google Scholar 

  • MacLeod DA, Cloke HL, Pappenberger F et al (2016) Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. Q J R Meteorol Soc 142:79–90

    Article  Google Scholar 

  • Mitchell HL, Houtekamer PL (2000) An adaptive ensemble Kalman filter. Mon Weather Rev 128:416–433

    Article  Google Scholar 

  • Miyoshi T (2011) The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon Weather Rev 139:1519–1535

    Article  Google Scholar 

  • Palmer TN, Buizza R, Doblas-Reyes F et al (2009) Stochastic parametrization and model uncertainty. ECMWF Tech Memo 598:1–42

    Google Scholar 

  • Shin S, Kang JS, Jo Y (2016) The local ensemble transform Kalman filter (LETKF) with a global NWP model on the cubed sphere. Pure Appl Geophys 173:2555–2570

    Article  Google Scholar 

  • Shin S, Kang JH, Chun HW et al (2018) Real data assimilation using the local ensemble transform Kalman filter (LETKF) system for a global non-hydrostatic NWP model on the cubed-sphere. Asia Pac J Atmos Sci 54:351–360

    Article  Google Scholar 

  • Shutts G (2005) A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q J R Meteorol Soc 131:3079–3102

    Article  Google Scholar 

  • Thépaut JN (2003) Satellite data assimilation in numerical weather prediction: an overview. In: Proceedings of the ECMWF seminar on recent developments in data assimilation for atmosphere and ocean. ECMWF, Reading, UK, 8–12 Sept 2003, pp 75–96

    Google Scholar 

  • Whitaker JS, Hamill TM (2012) Evaluating methods to account for system errors in ensemble data assimilation. Mon Weather Rev 140:3078–3089

    Article  Google Scholar 

  • Ying Y, Zhang F (2015) An adaptive covariance relaxation method for ensemble data assimilation. Q J R Meteorol Soc 141:2898–2906

    Article  Google Scholar 

  • Zhang F, Snyder C, Sun J (2004) Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon Weather Rev 132:1238–1253

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A08025520) and by the NRF grant funded by the Korean government (MSIT) (NRF-2021R1A2C1095535).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon Ki Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, S., Park, S.K. (2023). Model Error Representations Using the Covariance Inflation Methods in Ensemble Data Assimilation System. In: Park, S.K. (eds) Numerical Weather Prediction: East Asian Perspectives. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-40567-9_12

Download citation

Publish with us

Policies and ethics