Skip to main content
Log in

Features of ocean surface winds observed by the QuikSCAT satellite before tropical cyclogenesis over the South China Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Ocean surface winds observed by the Quick Scatterometer (QuikSCAT) satellite prior to the geneses of 36 tropical cyclones (TCs) in the South China Sea (SCS) are investigated in this paper. The results show that there are areas with negative mean horizontal divergence around the TC genesis locations three days prior to TC formation. The divergence term [−(f+ζ)(∂u/∂x+∂v/∂y)] in the vorticity equation is calculated based upon the QuikSCAT ocean surface wind data. The calculated mean divergence term is about 10.3 times the mean relative vorticity increase rate around the TC genesis position one day prior to TC genesis, which shows the important contributions of the divergence term to the vorticity increase prior to TC formation. It is suggested that criteria related with the divergence and divergence term be applied in early detections of tropical cyclogenesis using the QuikSCAT satellite data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bliven, L. F., H. Branger, P. W. Sobieski, and J. P. Giovanageli, 1993. An analysis of scatterometer returns from a water agitated by artificial rain. Int. J. Remote Sens., 14: 2315–2329.

    Article  Google Scholar 

  • Charney, J. G., and A. Eliassen, 1964. On the growth of the hurricane depression. J. Atmos. Sci., 21: 68–75.

    Article  Google Scholar 

  • Chen, L. S., and Y. H. Ding, 1979. An Introduction to the West. Pacific Ocean Typhoons. Science Press, Beijing, China, 400–490 (in Chinese).

    Google Scholar 

  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004. Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303: 978–983.

    Article  Google Scholar 

  • Emanuel, K. A., 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43:585–604.

    Article  Google Scholar 

  • Freilich, M. H., and R. S. Dunbar, 1999. The accuracy of the NSCAT-1 vector winds: comparisons with NDBC buoys. J. Geophys. Res., 104: 11 231–11 246.

    Article  Google Scholar 

  • Gray, W. M., 1968. Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96: 669–700.

    Article  Google Scholar 

  • Gray, W. M., 1998. The formation of tropical cyclones. Meteorol. Atmos. Phys., 67: 37–69.

    Article  Google Scholar 

  • Katsaros, K. B., E. B. Dunbar, P. Chang, and W. T. Liu, 2001. QuikSCAT’s SeaWinds facilitates early identification of tropical depressions in 1999 hurricane season. Geophys. Res. Lett., 28: 1043–1046.

    Article  Google Scholar 

  • Lau, K. H., Z. F. Zhang, H. Y. Lam, and S. J. Chen, 2003. Numerical simulation of a South China Sea typhoon Leo (1999). Meteorol. Atmos. Phys., 83: 147–161.

    Google Scholar 

  • Lee, C.-S., Y.-L. Lin, and K. W. Cheung, 2006. Tropical cyclone formations in the South China Sea associated with the Mei-Yu front. Mon. Wea. Rev., 134: 2670–2687.

    Article  Google Scholar 

  • Li, T., B. Fu, X. Ge, B. Wang, and M. Peng, 2003. Satellite data analysis and numerical simulation of tropical cyclone formation. Geophys. Res. Lett., 30(21), 2122, doi: 10.1029/2003-GL018556.

    Article  Google Scholar 

  • Liu, K. S., and J. C. L. Chan, 1999. Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127:2992–3001.

    Article  Google Scholar 

  • McBride, J. L., 1995. Tropical cyclone formation. Global perspectives on tropical cyclones. Tech. Doc. WMO/TD No. 693, World Meteorological Organization, Geneva, Switzerland, 63–105.

    Google Scholar 

  • Ramage, C. S., 1974. The typhoons of October 1970 in the South China Sea: intensification, decay and ocean interaction. J. Appl. Meteor., 13: 739–751.

    Article  Google Scholar 

  • Sharp, R. J., M. A. Bourassa, and J. J. O’Brien, 2002. Early detection of tropical cyclones using seawinds-derived vorticity. Bull. Amer. Meteor. Soc., 83: 879–889.

    Article  Google Scholar 

  • Sobieski, P., C. Craeye, and L. F. Bliven, 1999. Scatterometric signatures of multivariate drop impacts on fresh and salt water surfaces. Int. J. Remote Sens., 20: 2149–2166.

    Article  Google Scholar 

  • Wang, L., C. H. Fung, and K. H. Lau, 2007a. The upper ocean thermal structure and the genesis locations of tropical cyclones in the South China Sea. J. Ocean Univ. Chin., 6(2):125–131.

    Article  Google Scholar 

  • Wang, L., K. H. Lau, C. H. Fung, and J. P. Gan, 2007b. The relative vorticity of ocean surface winds from the QuikSCAT satellite and its effects on the geneses of tropical cyclones in the South China Sea. Tellus A, 59: 562–569.

    Article  Google Scholar 

  • Weissman, D. E., M. A. Bourassa, and J. Tongue, 2002. Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19: 738–746.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Lau, KH., Fung, CH. et al. Features of ocean surface winds observed by the QuikSCAT satellite before tropical cyclogenesis over the South China Sea. J. Ocean Univ. China 7, 241–245 (2008). https://doi.org/10.1007/s11802-008-0241-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-008-0241-8

Key words

Navigation