Skip to main content
Log in

Exopolysaccharides from marine bacteria

  • Review
  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives, textiles, Pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc This paper gives a brief summary of the information about the EPSs produced by marine bacteria, including their chemical compositions, properties and structures, together with their potential applications in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anton, J., I. Meseguer, and F. Rodrlguea-valera, 1988. Production of an extracellular polysaccharide by Haloferax mediterranei. Applied and Environment Microbiolog., 54(10): 2381–2386.

    Google Scholar 

  • Arena, A., 2004. Exopolysaccharides from marine thermophilic bacilli induce a Th1 cytokine profile in human PBMC. Clinical Microbiology and Infection., 10: 366.

    Article  Google Scholar 

  • Bartlett, D. H., E. M. Wright, and M. Sliverman, 1988. Variable expression of extracellular polysaccharide in the marine bacterium Pseudomonas atlantica is controlled by genome rearrangement. Proc. Natl. Acad. Sci., 88: 3923–3927.

    Article  Google Scholar 

  • Boyle, CD., and A.E. Reade, 1983. Characterization of two extracellular polysaccharide marine bacteria. Appli. Enrivo. Microbol., 46(2): 392–399.

    Google Scholar 

  • Bozzi, L., M. Milas, and M. Tinaudo, 1996. Characterization and solution properties of a new exopolysaccharide excreted by the bacterium Alteromonas sp. strain 1644. Int. J. Biol. Macromol., 18: 9–17.

    Article  Google Scholar 

  • Bozzi, L., M. Milas, and M. Tinaudo, 1996. Solution and gel rheology of a new exopolysaccharide excreted by the bacterium Alteromonas sp. strain 1644. Int. J. Biol. Macromol., 18: 83–91.

    Article  Google Scholar 

  • Cambon-Bonavita, M.A., G. Raguenes, J. Jean, P. Vincent, and J. Guezennec, 2002. A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent Polychate annelid. Appl. Environ. Microbiol., 93: 310–315.

    Google Scholar 

  • Chi, Z., and S. Z. Zhao, 2003. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast. Enzyme and Microbial Technology, 33: 206–211.

    Article  Google Scholar 

  • Christensen, B.E., J. Kjosbakken, and O. Smifdtof, 1985. Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, periphytic pseudomonas sp. strain NCMB 2021. Appl. Environ. Microbiol., 50(4): 837–845.

    Google Scholar 

  • Gorshkova, R.P., E. L. Nazarenko, V.A. Zubkov, E.P. Ivanova, Ovodov IuS, et al., 1993. Structure of the repeating link of the acid polysaccharide of Alteromonas haloplanktis KMM 156. Bioorg Khim., 19(3): 327–336.

    Google Scholar 

  • Guezennec, J., 2002. Deep-sea hydrothermal vents: Anew source of innovative bacterial exopolysaccharides of biotechnological interest? Journal of Industrial Microbiology and Biotechnology, 29: 204–208.

    Article  Google Scholar 

  • Guezennec, J., P. Pignet, Y. Lijour, E. Gentric, J. Ratiskol, et al., 1998. Sulfation and depolymerization of a bacterial exopolysaccharides of hydrothermal origin. Carbohy. Poly., 37: 19–24.

    Article  Google Scholar 

  • Hoskins, D.L., S.E. Stancyk, and A.W. Decho, 2003. Utilization of algal and bacterial extrcellular polymeric secretions (EPS) by the deposit-feeding brittiestar Amphipholis gracillima (Echinodermata). MPES., 247: 93–101.

    Google Scholar 

  • Jayaraman, M., and J. Seetharaman, 2003. Phsicochemical analysis of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolytics. Process Biochemistr., 38(6): 841–847.

    Article  Google Scholar 

  • Jodi, L., Enos-Berlage, and L. McCarter, 2000. Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. Journal of Bacteriology, 182(19): 5513–5520.

    Article  Google Scholar 

  • Kawaguchi, T., and A. W. Decho, 2000. Biochemical characterization of cyanobacterial extracellular polymers (EPS) from modern marine stromatolites (Bahamas). Prep. Biocheml. Biotechnol., 30(4): 321–330.

    Article  Google Scholar 

  • Kawaguchi, T., and A.W. Decho, 2001. Potential roles of extracellular polymeric secretions (EPS) in regulating calci. cation — A study of marine stromatolites, Bahamas. Thalassas, 17(2): 11–19.

    Google Scholar 

  • Lee, H.K., J. Chun, E. Y. Moon, S. H. Ko, D. S. Lee, et al., 2001. Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 2: 661–666.

    Google Scholar 

  • Lee, Y.K., H.W. Kim, C.L. Liu, and H.K. Lee, 2003. A simple method for DNA extraction from marine bacteria that produce extracellular materials. Journal of microbiological Methods, 52: 245–250.

    Article  Google Scholar 

  • MacCormick, C.A., J.E. Harris, A.J. Jay, M.J. Ridout, I.J. Colquhoun, et al., 1996. Isolation and characterization of new extracellular polysaccharide from an Acetobacter species. J. Appl. Bacteriol., 81: 419–424.

    Google Scholar 

  • Maugeri, T.L., C. Gugliandolo, D. Caccamo, A. Panico, L. Lama, et al., 2002. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnology Letters, 24(7): 515–519.

    Article  Google Scholar 

  • Nazarenko, E. L., V. A. Zubkov, A. S. Shashkov, R. P. Gorshkova, E.P. Ivanova, et al., 1993. Structure of the repeating unit of acid polysaccharide from Alteromonas macleodii 2MM6. Bioorg Khim., 19(7): 740–751.

    Google Scholar 

  • Nicolaus, B., L. Lama, A. Panico, V.S. Moriello, I. Romano, et al., 2004. Production and characterization of exopolysaccharides excreted by thermophilic bacteria from shallow, marine hydrothermal vents of Flegrean Ares (Italy). Systematic and Applied Microbiology, 25 (3): 319–325

    Article  Google Scholar 

  • Nicolaus, B., M. V. Schiano, L. Lama, A. Poli, and A. Gambacorta, 2004. Polysaccharides from extremophilic microorganisms. Orig. life. Evol. Biosph., 34(1–2): 159–169.

    Article  Google Scholar 

  • Nicolaus, B., M. V. Schiano, L. Lama, A. Poli, C. Gugliandolo, et al., 2003. Production of exopolysaccharides from a thermophilic microorganism isolated from a marine hot spring in flegrean areas. J. Ind. Microbiol Biotechnol., 30: 95–101.

    Google Scholar 

  • Nichols, M. C. A., S. Garon, J. P. Bowman, G. Raguenes, J. Guezennec, et al., 2004. Production of exopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology, 96: 1057–1066.

    Article  Google Scholar 

  • Querellou, J., 2003. Biotechnology of marine extremopiles. Journal of Thrombosis and Haemostasis, 1: 12–18.

    Article  Google Scholar 

  • Quintero, E.J., and R.M. Weiner, 1995. Evidence for the adhesive function of the exopolysaccharide of hyphomonas strain MHS-3 in its attachment to surfaces. Appl. Environ Microbi., 61(5): 1897–1903.

    Google Scholar 

  • Quintero, E.J., S.E. Langille, and R.M. Weiner, 2001. The polar polysaccharide capsule of Hyphomonas adhaerens MHS-3 has a strong affinity for gold. Journal of Industrial Microbiology and Biotechnology, 27: 1–4.

    Article  Google Scholar 

  • Raguenes, G., A. Peres, R. Ruimy, P. Pignet, R. Christen, et al., 1997. Alteromonas infernus sp. nov., a new polysaccharide producing bacterium isolated from a deepsea hydrothermal vent. J. Appl. Bacteriol., 82: 422–430.

    Google Scholar 

  • Raguenes, G., P. Pignet, G. Gauthier, A. Peres, R. Christen, et al., 1996. Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alt. macleodii subsp fijiensis, and preliminary characterization of the polymer. Appl. Environ. Microbil., 62: 67–73.

    Google Scholar 

  • Rinker, K.D., and K. Robertm, 1996. Growth Physiology of the Hyperthermophilic Archaeon Thermococcus litoralis: Development of a Sulfur-Free Defined Medium, Characterization of an Exopolysaccharide, and Evidence of Biofilm Formation. Appl. Environ. Microbil., 12: 4478–4485.

    Google Scholar 

  • Rougeaux, H., J. Guezennec, R. W. Carlson, R. Pichon, N. Kervarec, et al., 1999. Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr. Res., 315: 273–285.

    Article  Google Scholar 

  • Rougeaux, H., N. Kervarec, R. Pichon, and J. Guezennec, 1999. Structure of the exopolysaccharide of Vibrio diabolicus isolated from a deep-sea hydrothermal vent. Carbohydr. Res., 322: 40–45.

    Article  Google Scholar 

  • Rougeaux, H., P. Talaga, R. W. Carson, and J. Guezennec, 1998. Structural studies of an exopolysaccharide produced by Alt. macleodii subsp fijiensis originating from a deep-sea hydrothermal vent. Carbohydr. Res., 312: 53–59.

    Article  Google Scholar 

  • Shah, V., A. Ray, N. Ray, and D. Madamwar, 2000. Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC51142, and its exploitation toward metal removal from solutions. Current Microbiology, 40: 274–278.

    Article  Google Scholar 

  • Sledjekit, D., and R. M. Weiner, 1993. Production and characterization of monoclonal antibodies specific for Shewanella colwelliana exopolysaccharide. Appl. Enviro. Microbiol., 59(5): 1565–1572.

    Google Scholar 

  • Talmont, F., P. Vincent, T.F. ontaine, J. Guezennec, D. Prieur, et al., 1991. Structural investigation of an acidic exopolysaccharide from a deep-sea hydrothermal vent marine bacteria. Food Hydrocoll., 5: 171–172.

    Article  Google Scholar 

  • Taylor, CD., CO. Wirsen, and F. Gaill, 1999. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ Microbiol., 65: 2253–2255.

    Google Scholar 

  • Techkarnjanaruk, S., S. Pongpattanakitshote, and A. E. Goodman, 1986. Use of a promoterless lacZ gene insertion to investigate chitinase gene expression in the marine bacterium Pseudoalteromonas sp. strain S9. Arch Microbiol., 145(3):220–227.

    Article  Google Scholar 

  • Umezawa, H., Y. Okami, S. Kurasawa, T. Ohnuki, M. Ishizuka, et al., 1983. Marinactan, antitumor polysaccharide produced by marine bacteria. J. Antibiot., 36(5): 471–477.

    Google Scholar 

  • Vincent, P., P. Pignet, F. Talmont, L. Bozzi, B. Fournet, et al., 1994. Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol., 60(11): 4134–4141.

    Google Scholar 

  • Weiner, R., S. Langille, and E. Quintero, 1995. Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind. Microbiol., 15: 339–346.

    Article  Google Scholar 

  • Weiner, R. M. 1997. Biopolymers from marine prokaryotes. Marine Biotechnology, 15: 390–394.

    Google Scholar 

  • Wrangstadh, M., P. L. Conway, and S. Kjellebery, 1986. The production and release of an extacellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion. Arch Microbil., 145: 220–2227.

    Article  Google Scholar 

  • Wrangstadh, M., P. L. Conway, and S. Kjellebery, 1989. The role of an extracellular polysaccharide produced by the marine Pseydomonas sp. S9 in cellular detachment during starvation. Can. J. Microbiol., 35: 309–312.

    Article  Google Scholar 

  • Zanchetta, P., N. Lagarde, and J. Guezennec, 2003. A new bone- healing material: a hyaluronic acid-like bacterial exopolysaccharide. Calcif Tissue Int., 72: 74–79.

    Article  Google Scholar 

  • Zhao, S. Z., and Z. Chi, 2003. A new pullulan-producing yeast and medium optimization for its exopolysaccharide production. Journal of Ocean University of Qingdao, 2: 53–557.

    Google Scholar 

  • Zinkevich, V., I. Bogdarina, H. Kang, M.A.W. Hill, R. Tapper, et al., 1996. Characterization of exopolymers produced by different isolates of marine sulphate-reducing bacteria. International Biodeteriorarion and Biodegradation, 37: 163–172.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, Z., Fang, Y. Exopolysaccharides from marine bacteria. J Ocean Univ. China 4, 67–74 (2005). https://doi.org/10.1007/s11802-005-0026-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-005-0026-2

Key words

Navigation