Skip to main content
Log in

Research on a fiber sensing system for metal ion detection based on SPF-PCF-SPF structure and coated LPFG

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

In order to provide a method for accurately detecting the concentration and types of heavy metal ions in water, a fluid ion detection system is designed. It consists of a side-polished fiber-assisted fluid structure and a long-period fiber grating (LPFG) coated with a metal chelating agent membrane. In this study, both theoretical and experimental investigations are conducted to examine the sensing characteristics of the system towards copper ion and iron ion solutions. The results demonstrate that under the premise of ensuring solution flow, the system can achieve specific identification of different types of heavy metal ions. Furthermore, it exhibits concentration sensing sensitivities of 9.23×104 mL·nm/mol and 7.13×104 mL·nm/mol for copper sulfate (CuSO4) and ferric chloride (FeCl3) solutions, respectively. Therefore, this sensing system offers the potential for real-time detection of metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ALI M. Preconcentration and determination of trace amounts of heavy metals in water samples using membrane disk and flame atomic absorption spectrometry[J]. Chinese journal of chemistry, 2007, 25(5): 640–644.

    Article  CAS  Google Scholar 

  2. SI Y, LAO J, ZHANG X, et al. Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection[J]. Journal of lightwave technology, 2019, 37(14): 3495–3502.

    Article  ADS  CAS  Google Scholar 

  3. LIN H, HUANG J, DING L. A recyclable optical fiber sensor based on fluorescent carbon dots for the determination of ferric ion concentrations[J]. Journal of lightwave technology, 2019, 37(18): 4815–4822.

    Article  ADS  CAS  Google Scholar 

  4. MU J, LIU J, GAO L. Upconversion fluorescence modulation of CaTiO3: Yb3+/Er3+ nanocubes via Zn2+ introduction[J]. Optoelectronics letters, 2022, 18(3): 129–134.

    Article  ADS  Google Scholar 

  5. SI Y, LAO J, ZHANG X, et al. Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection[J]. Journal of lightwave technology, 2019, 37(14): 3495–3502.

    Article  ADS  CAS  Google Scholar 

  6. SHAKYA A K, SINGH S. State of the art in fiber optics sensors for heavy metals detection[J]. Optics and laser technology, 2022, 153: 1879–2545.

    Google Scholar 

  7. CAI S, PAN H, GONZÁLEZ-VILA Á, et al. Selective detection of cadmium ions using plasmonic optical fiber gratings functionalized with bacteria[J]. Optics express, 2020, 28(13): 19740–19749.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. BASHAN G, LONDON Y, DIAMANDI H H, et al. Distributed cladding mode fiber-optic sensor[J]. Optica, 2020, 7(1): 85–92.

    Article  ADS  CAS  Google Scholar 

  9. ABDULKAREEM H D, ALWAHIB A A, MAHDI B R. PCF-multimode/endless fiber sensor for respiratory rate monitoring[J]. Optoelectronics letters, 2023, 19(1): 8–13.

    Article  ADS  Google Scholar 

  10. LI Y, LI Y, MIAO Y, et al. Micro-displacement sensor based on an asymmetric wavy multimode fiber interferometer[J]. Optoelectronics letters, 2023, 19(3): 134–138.

    Article  ADS  Google Scholar 

  11. SHUKLA G M, PUNJABI N, KUNDU T, et al. Optimization of plasmonic U-shaped optical fiber sensor for mercury ions detection using glucose capped silver nanoparticles[J]. IEEE sensors journal, 2019, 19(9): 3224–3231.

    Article  ADS  CAS  Google Scholar 

  12. WANG R, REN Z, KONG D, et al. Graphene oxide functionalized micro-tapered long-period fiber grating for sensitive heavy metal sensing[J]. Applied physics express, 2020, 13(6): 067001.

    Article  ADS  CAS  Google Scholar 

  13. LI G, LIU Z, FENG J, et al. Pb2+ fiber optic sensor based on smart hydrogel coated Mach-Zehnder interferometer[J]. Optics & laser technology, 2022, 145: 107453.

    Article  CAS  Google Scholar 

  14. RYBARCHUK O V, DRAGUNSKY A V, DUDAREV V I, et al. Sorption reaction of chromium (VI) ions with carbon adsorbents[J]. Protection of metals and physical chemistry of surfaces, 2021, 57(3): 464–468.

    Article  CAS  Google Scholar 

  15. LIU S, LU G W, LÜ D Y, et al. Sensitivity enhanced temperature sensor with cascaded Sagnac loops based on harmonic Vernier effect[J]. Optical fiber technology, 2021, 66: 102654.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renpu Li.

Ethics declarations

Conflicts of interest

GUO Junqi is an editorial board member for Optoelectronics Letters and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.61705027, 62005033, 11704053 and 52175531), the Basic Research Project of Chongqing Science and Technology Commission (No.CSTC-2020jcyj-msxm0603), and the Science and Technology Research Program of Chongqing Municipal Education Commission (No.KJQN202000609 and KJZD-M202000602).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhou, Y., Zheng, W. et al. Research on a fiber sensing system for metal ion detection based on SPF-PCF-SPF structure and coated LPFG. Optoelectron. Lett. 20, 211–215 (2024). https://doi.org/10.1007/s11801-024-3113-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-024-3113-6

Document code

Navigation