Skip to main content
Log in

Micro-displacement sensor based on an asymmetric wavy multimode fiber interferometer

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We proposed a compact and tunable multimode interferometer (MMI) based on an asymmetric wavy fiber (AMWF), which has axial offset, off-center taper waist, and micro-length. The fabrication process only contains non-axis pulling processes of single-mode fiber on two close positions. Theoretical qualitative analyses and experiments verify the tunable multimode propagation of the AMWF. Experimental results show a nonlinear wavelength response with increasing axis displacement from 0 to 120 µm. In the range of 0–10 µm, the sensitivity reaches the highest value of −1.33 nm/µm. Owing to its cost-effective, high-compact and tunable multimode propagation properties, the AMWF provides a promising platform for micro-nano photonic devices and optical sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YOUNG T. A course of lectures on natural philosophy and the mechanical arts V2[M]. New York: Manhattan Rare Book Company, 1807.

    Book  Google Scholar 

  2. SMITH T A, SHIH Y. Turbulence-free double-slit inter-ferometer[J]. Physical review letters, 2018, 120(6): 063606.

    Article  ADS  Google Scholar 

  3. LIU T, PAGLIANO F, VELDHOVEN R V, et al. Integrated nano-optomechanical displacement sensor with ultrawide optical bandwidth[J]. Nature communications, 2020, 11(1): 1–7.

    Google Scholar 

  4. HUANG L, XUE J, GAO B, et al. One-dimensional angular-measurement-based stitching interferometry[J]. Optics express, 2018, 26(8): 9882–9892.

    Article  ADS  Google Scholar 

  5. MARRUJO-GARCÍA S, HERNÁNDEZ-ROMANO I, TORRES-CISNEROS M, et al. Temperature-independent curvature sensor based on in-fiber Mach-Zehnder interferometer using hollow-core fiber[J]. Journal of lightwave technology, 2020, 38(15): 4166–4173.

    Google Scholar 

  6. FLORES-BRAVO J A, ILLARRAMENDI M A, ZUBIA J, et al. Optical fiber interferometer for temperature-independent refractive index measuring over a broad range[J]. Optics & laser technology, 2021, 139: 106977.

    Article  Google Scholar 

  7. JIANG C, LIU Y, MOU C, et al. Fiber vector magnetometer based on polarization-maintaining fiber long-period grating with ferrofluid nanoparticles[J]. Journal of lightwave technology, 2022, 40(8): 2494–2502.

    Article  ADS  Google Scholar 

  8. DU D, XU C, YANG Z, et al. Ultrasensitive temperature sensor and mode converter based on a modal interferometer in a two-mode fiber[J]. Optics express, 2021, 29(20): 32135–32148.

    Article  ADS  Google Scholar 

  9. HU Z, CHEN Y, TAN J, et al. A hybrid self-growing polymer microtip for ultracompact and fast fiber humidity sensing[J]. Sensors and actuators B: chemical, 2021, 346: 130462.

    Article  Google Scholar 

  10. LI L, ZHANG Y, ZHOU Y, et al. Optical fiber optofluidic bio-chemical sensors: a review[J]. Laser & photonics reviews, 2021, 15(7): 2000526.

    Article  ADS  Google Scholar 

  11. XIA F, ZHAO Y, HU H, et al. Optical fiber sensing technology based on Mach-Zehnder interferometer and orbital angular momentum beam[J]. Applied physics letters, 2018, 112(22): 221105.

    Article  ADS  Google Scholar 

  12. CUI J, LIU Z, GUNAWARDENA D S, et al. Two-dimensional vector accelerometer based on Bragg gratings inscribed in a multi-core fiber[J]. Optics express, 2019, 27(15): 20848–20856.

    Article  ADS  Google Scholar 

  13. AZMI A I, ABDULLAH A S, NOOR M Y M, et al. Dynamic bending and rotation sensing based on high coherence interferometry in multicore fiber[J]. Optics & laser technology, 2021, 135: 106716.2

    Article  Google Scholar 

  14. ZHONG Y, XU P, YANG J, et al. Optical fiber interferometric humidity sensor by using hollow core fiber interacting with gelatin film[J]. Sensors, 2022, 22(12): 4514.

    Article  ADS  Google Scholar 

  15. FARASAT M, AALAEI E, KHEIRATI RONIZI S, et al. Signal-based methods in dielectrophoresis for cell and particle separation[J]. Biosensors, 2022, 12(7): 510.

    Article  Google Scholar 

  16. GONG P, WANG Y, ZHOU X, et al. In situ temperature-compensated DNA hybridization detection using a dual-channel optical fiber sensor[J]. Analytical chemistry, 2021, 93(30): 10561–10567.

    Article  Google Scholar 

  17. ZHU C, HUANG J. Sensitivity-enhanced microwave-photonic optical fiber interferometry based on the Vernier effect[J]. Optics express, 2021, 29(11): 16820–16832.

    Article  ADS  Google Scholar 

  18. WEI F, LIU D, WANG Z, et al. Enhancing the visibility of Vernier effect in a tri-microfiber coupler fiber loop interferometer for ultrasensitive refractive index and temperature sensing[J]. Journal of lightwave technology, 2020, 39(5): 1523–1529.

    Article  ADS  Google Scholar 

  19. YUAN W, ZHAO Q, LI L, et al. Simultaneous measurement of temperature and curvature using ring-core fiber-based Mach-Zehnder interferometer[J]. Optics express, 2021, 29(12): 17915–17925.

    Article  ADS  Google Scholar 

  20. ALONSO-MURIAS M, MONZÓN-HERNÁNDEZ D, ANTONIO-LOPEZ E, et al. Hybrid optical fiber Fabry-Perot interferometer for nano-displacement sensing[J]. Optics & laser technology, 2022, 155: 108426.

    Article  Google Scholar 

  21. FILOTEO-RAZO J D, HERNANDEZ-GARCIA J C, ESTUDILLO-AYALA J M, et al. Multi-wavelength Er-Yb-doped fibre ring laser using a double-pass Mach-Zehnder interferometer with a Sagnac interferometer[J]. Optics & laser technology, 2021, 139: 106994.

    Article  Google Scholar 

  22. CHEN J, ZHOU J, YUAN X. M-Z interferometer constructed by two S-bend fibers for displacement and force measurements[J]. IEEE photonics technology letters, 2014, 26(8): 837–840.

    Article  ADS  Google Scholar 

  23. YANG R, YU Y S, CHEN C, et al. S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain[J]. Journal of lightwave technology, 2012, 30(19): 3126–3132.

    Article  ADS  Google Scholar 

  24. SHEN C, WANG Y, CHU J, et al. Optical fiber axial micro-displacement sensor based on Mach-Zehnder in-terferometer[J]. Optics express, 2014, 22(26): 31984–31992.

    Article  ADS  Google Scholar 

  25. LI C, NING T, ZHANG C, et al. All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications[J]. Sensors and actuators A: physical, 2016, 248: 148–154.

    Article  Google Scholar 

  26. ZHANG C, LU P, LIAO H, et al. Simultaneous measurement of axial strain and temperature based on a Z-shape fiber structure[J]. IEEE photonics journal, 2017, 9(4): 1–8.

    Google Scholar 

  27. WU J, MIAO Y, SONG B, et al. Simultaneous measurement of displacement and temperature based on thin-core fiber modal interferometer[J]. Optics communications, 2015, 340: 136–140.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their appreciation to Tianjin Yiyang Technology Co., Ltd. for support to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Li or Kailiang Zhang.

Additional information

Statements and Declarations

The authors declare that there are no conflicts of interest related to this article.

This work has been supported by the National Key Research and Development Program of China (No.2017YFB0405600), the National Natural Science Foundation of China (Nos.62001326, 61274113 and 61404091), the Natural Science Foundation of Tianjin City (Nos.18JCYBJC85700 and 18JCZDJC30500), the Open Project of State Key Laboratory of Functional Materials for Information (No.SKL202007), and the Science and Technology Planning Project of Tianjin City (No.20ZYQCGX00070).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Miao, Y. et al. Micro-displacement sensor based on an asymmetric wavy multimode fiber interferometer. Optoelectron. Lett. 19, 134–138 (2023). https://doi.org/10.1007/s11801-023-2139-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-023-2139-5

Document code

Navigation