Skip to main content
Log in

Plasmon-enhanced photoresponse of deep-subwavelength GaAs NW photodetector

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

According to optical diffraction limit, the photoresponsity of nanowire (NW)-based photodetector exponentially decreases when its NW diameter reduces to the range of deep subwavelength. In this paper, we demonstrate a photoresponse-enhanced method of the deep-subwavelength GaAs NW photodetector by using a plasmon-driven dipole antenna. Considering that the enhancement is extremely influenced by the shape and size of antenna, the structure of antenna is optimized by finite difference time domain (FDTD) solutions. The optimal structure of antenna optimizes the responsivity-enhanced factors to 1123.3 and 224.7 in NW photodetectors with NW diameters of 20 nm and 60 nm, respectively. This photoresponse-enhanced method is promising for easy-integration high-performance nanoscale photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim W, Dubrovskii V G, Vukajlovic-Plestina J, Tütüncüoglu G, Francaviglia L, Güniat L, Potts H, Friedl M, Leran J and Fontcuberta i Morral A, Nano Lett. 18, 49 (2018).

    Article  ADS  Google Scholar 

  2. García Núñez C, Braña A F, Pau J L, Ghita D, García B J, Shen G, Wilbert D S, Kim S M and Kung P. J. Appl. Phys. 115, 034307 (2014).

    Article  Google Scholar 

  3. García Núñez C, García Marín A, Nanterne P, Piqueras J, Kung P and Pau J L, Nanotech. 24, 415702 (2013).

    Article  Google Scholar 

  4. Wang G, Zhang Y, You C, Liu B, Yang Y, Li H, Cui A, Liu D and Yan H, Infrared Phys. Tech. 88, 149 (2018).

    Article  ADS  Google Scholar 

  5. Rajan N K, David A R and Mark A R, Appl. Phys. Lett. 98, 264107 (2011).

    Article  ADS  Google Scholar 

  6. Xie P, Xiong Q, Fang Y, Qing Q and Lieber C M, Nat. Nanotechnol. 7, 119 (2012).

    Article  ADS  Google Scholar 

  7. Núñez C G, Liu F, Navaraj W T, Christou A, Shakthivel D and Dahiya R, Microsyst. Nanoeng 4, 1 (2018).

    Article  Google Scholar 

  8. Ali H, Zhang Y, Tang J, Peng K, Sun S S, Sun Y, Song F, Falak A, Wu S, Qian C, Wang M, Zuo Z and Jin K, Small 14, 01704429 (2018).

    Article  Google Scholar 

  9. Luo Y, Yan X, Zhang J, Li B, Wu Y, Lu Q, Jin C, Zhang X and Ren X, Nanoscale 10, 9212 (2018).

    Article  Google Scholar 

  10. Cammi D, Rodiek B, Zimmermann K, Kuck S and Voss T, J. Mater. Res. 32, 2464 (2017).

    Article  ADS  Google Scholar 

  11. Núñez C G, Braña A F, López N, Pau J L and García B J, Nanotech. 31, 225604 (2020).

    Article  ADS  Google Scholar 

  12. Nägelein A, Timm C, Schwarzburg K, Steidl M, Kleinschmidt P and Hannappel T, Sol. Energ. Mat. Sol. C 197, 13 (2019).

    Article  Google Scholar 

  13. Barrigón E, Hultin O, Lindgren D, Yadegari F, Magnusson M H, Samuelson L, Johansson L I M and Björk M T, Nano Lett. 18, 2 (2018).

    Article  Google Scholar 

  14. Novotny L, Hecht B and Keller O, Phys. Today 60, 62, (2006).

    Google Scholar 

  15. Hauswald C, Giuntoni I, Flissikowski T, Gotschke T, Calarco R, Grahn H T, Geelhaar L and Brandt O, ACS Photo. 4, 52 (2016).

    Article  Google Scholar 

  16. Soci C, Zhang A, Bao X Y, Kim H, Lo Y and Wang D, J. Nanosci. and Nanotech. 10, 1430 (2010).

    Article  Google Scholar 

  17. Chen R, Li D, Hu H, Zhao Y, Wang Y, Wong N, Wang S, Zhang Y, Hu J, Shen Z and Xiong Q, J. Phys. Chem. C, 116, 4416 (2012).

    Article  Google Scholar 

  18. Colombo C, Krogstrup P, Nygård J, Brongersma M L and Fontcuberta i Morral A, New J. Phys. 13, 123026 (2011).

    Article  ADS  Google Scholar 

  19. Hyun J K and Lauhon L J, Nano Lett. 11, 2731 (2011).

    Article  ADS  Google Scholar 

  20. Zhang X, Liu Q, Liu B, Yang W, Li J, Niu P and Jiang X, J. Mater. Chem. C 5, 4319 (2017).

    Article  Google Scholar 

  21. Knight M W, Grady N K, Bardhan R, Hao F, Nordlander P and Halas N J, Nano Lett. 7, 2346 (2007).

    Article  ADS  Google Scholar 

  22. Jee S W, Zhou K, Kim D W and Lee J H, Nano Converg. 1, 29 (2014).

    Article  Google Scholar 

  23. Polman A and Catchpole K R, Opt. Exp. 16, 21793 (2008).

    Article  ADS  Google Scholar 

  24. Casadei A, Pecora E F, Trevino J, Forestiere C, Rüffer D, Russo-Averchi E, Matteini F, Tutuncuoglu G, Heiss M, Fontcuberta i Morral A and Dal Negro, Nano Lett. 14, 2271 (2014).

    Article  ADS  Google Scholar 

  25. Tang L, Kocabas S E, Latif S, Okyay A K, Lygagnon D, Saraswat K C and Miller D A B, Nature Photo. 2, 226 (2008).

    Article  Google Scholar 

  26. Hao E and Schatz G C., J. Chem. Phys. 120, 357 (2004).

    Article  ADS  Google Scholar 

  27. Crozier K B, Sundaramurthy A, Kino G S and Quate C F, J. Appl. Phys. 94, 4632 (2003).

    Article  ADS  Google Scholar 

  28. Huang N, Lin C and Povinelli M L, J. Appl. Phys. 112, 001948 (2012).

    Google Scholar 

  29. Cao L, White J S, Park J S, Schuller J A, Clemens B M and Brongersma M L, Nature Mater. 8, 6432009 (2009).

    Article  Google Scholar 

  30. Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T and Crozier K, Nano Lett. 11, 1851 (2011).

    Article  ADS  Google Scholar 

  31. Mie G., Ann. Phys-Berlin, 330, 377 (2010).

    Article  ADS  Google Scholar 

  32. Mühlschlegel P, Martin O J F, Hecht B, Hecht B and Pohl D W, Science 308, 1607 (2005).

    Article  ADS  Google Scholar 

  33. Yuan Z, Li X, Guo Y and Huang J, Optoelectronics Lett. 11, 13 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Li  (李邦).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.61774021, 61806007 and 61911530133), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (No.IPOC2019ZT07), the Fundamental Research Funds for the Central Universities (No.2018XKJC05), the Project of Key Science and Technology in Henan Province (No.202102310562), the Fund of Key Laboratory of Oracle Bone Inscriptions Information Processing, Ministry of Education of China (No.OIP2019M006), the Research Foundation of Anyang Normal University (No.AYNUKPY-2019-04), and the Anyang Scientific and Technological Project (No.2021C01X012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Tang, Y., Yan, X. et al. Plasmon-enhanced photoresponse of deep-subwavelength GaAs NW photodetector. Optoelectron. Lett. 17, 385–389 (2021). https://doi.org/10.1007/s11801-021-0120-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0120-8

Document code

Navigation