Skip to main content
Log in

Endothelial function and oxidative stress in diabetes: active profile of the long-acting nitrate pentaerythritol tetranitrate (PETN)

  • Published:
Clinical Research in Cardiology Supplements Aims and scope

Abstract

Diabetes is an independent risk factor for coronary artery disease. For the occurrence of cardiovascular complications in diabetes, endothelial dysfunction plays an important role. Alterations of the endothelial-dependent coronary blood flow reserve have been shown to be based on the reduced bioavailability of nitric oxide (NO). Therefore, pharmacological approaches, which potentially reduce oxidative stress at the site of the endothelium, may be beneficial. As compared with other nitrates, the long-acting nitrate pentaerythritol tetranitrate (PETN) displays characteristics which may be beneficial for the treatment of endothelial dysfunction: apart from its vasodilatory and anti-ischemic properties, it has been shown to reduce endothelial dysfunction by activating the heme oxygenase-1 (HO-1) system. It also suppresses atherosclerotic vascular alterations. Other than regular nitrates, e.g., isosorbide dinitrate, drug tolerance is not observed. Treatment with pentaerythritol tetranitrate (PETN) may be advantageous in diabetic patients, who frequently present with endothelial dysfunction. Studies in diabetes assessing the effects of pentaerythritol tetranitrate (PETN) on cardiovascular function may display important effects on the active profile of PETN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Standl E, Schnell O (2000) A new look at the heart in diabetes mellitus: from ailing to failing. Diabetologia 43:1455–1469

    Article  PubMed  CAS  Google Scholar 

  2. Granger CB, Califf RM, Young S et al (1993) Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) Study Group. J Am Coll Cardiol 21:920–925

    Article  PubMed  CAS  Google Scholar 

  3. Otter W, Kleybrink S, Doering W, Standl E, Schnell O (2004) Hospital outcome of acute myocardial infarction in patients with and without diabetes mellitus. Diabet Med 21:183–187

    Article  PubMed  CAS  Google Scholar 

  4. Williams B, Gallacher B, Patel H, Orme C (1997) Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes 46:1497–1503

    Article  PubMed  CAS  Google Scholar 

  5. Hattori N, Schnell O, Bengel FM et al (2002) Deferoxamine improves coronary vascular responses to sympathetic stimulation in patients with type 1 diabetes mellitus. Eur J Nucl Med Mol Imaging 29:891–898

    Article  PubMed  CAS  Google Scholar 

  6. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  7. Wilson SH, Celermajer DS, Nakagomi A et al (1999) Vascular risk factors correlate to the extent as well as the severity of coronary atherosclerosis. Coron Artery Dis 10:449–453

    Article  PubMed  CAS  Google Scholar 

  8. Pieper GM, Gross GJ (1988) Oxygen free radicals abolish endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 255:H825–833

    PubMed  CAS  Google Scholar 

  9. Di Carli MF, Tobes MC, Mangner T et al (1997) Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 336:1208–1215

    Article  PubMed  Google Scholar 

  10. Yokoyama I, Momomura S, Ohtake T et al (1997) Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 30:1472–1477

    Article  PubMed  CAS  Google Scholar 

  11. Kichuk MR, Seyedi N, Zhang X et al (1996) Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation. Circulation 94:44–51

    PubMed  CAS  Google Scholar 

  12. Baumgartner-Parzer SM, Wagner L, Pettermann M, Gessl A, Waldhausl W (1995) Modulation by high glucose of adhesion molecule expression in cultured endothelial cells. Diabetologia 38:1367–1370

    Article  PubMed  CAS  Google Scholar 

  13. Lorenzi M, Cagliero E (1991) Pathobiology of endothelial and other vascular cells in diabetes mellitus. Call for data. Diabetes 40:653–659

    Article  PubMed  CAS  Google Scholar 

  14. Knight JA (1998) Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 28:331–346

    PubMed  CAS  Google Scholar 

  15. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  16. Kruger AL, Peterson SJ, Schwartzman ML et al (2006) Upregulation of heme oxygenase provides vascular protection in an animal model of diabetes through its anti-oxidant and anti-apoptotic effects. J Pharmacol Exp Ther 319:1144–1152

    Article  PubMed  CAS  Google Scholar 

  17. Otterbein LE, Choi AM (2000) Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279:L1029–1037

    PubMed  CAS  Google Scholar 

  18. Chen YH, Yet SF, Perrella MA (2003) Role of heme oxygenase-1 in the regulation of blood pressure and cardiac function. Exp Biol Med (Maywood) 228:447–453

    CAS  Google Scholar 

  19. Vitek L, Schwertner HA (2007) The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv Clin Chem 43:1–57

    Article  PubMed  CAS  Google Scholar 

  20. Hopkins PN, Wu LL, Hunt SC et al (1996) Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arterioscler Thromb Vasc Biol 16:250–255

    Article  PubMed  CAS  Google Scholar 

  21. Abraham NG, Asija A, Drummond G, Peterson S (2007) Heme oxygenase -1 gene therapy: recent advances and therapeutic applications. Curr Gene Ther 7:89–108

    Article  PubMed  CAS  Google Scholar 

  22. Schulz E, Tsilimingas N, Rinze R et al (2002) Functional and biochemical analysis of endothelial (dys)function and NO/cGMP signaling in human blood vessels with and without nitroglycerin pretreatment. Circulation 105:1170–1175

    Article  PubMed  CAS  Google Scholar 

  23. Munzel T, Daiber A, Mulsch A (2005) Explaining the phenomenon of nitrate tolerance. Circ Res 97:618–628

    Article  PubMed  Google Scholar 

  24. Sekiya M, Sato M, Funada J et al (2005) Effects of the long-term administration of nicorandil on vascular endothelial function and the progression of arteriosclerosis. J Cardiovasc Pharmacol 46:63–67

    Article  PubMed  CAS  Google Scholar 

  25. Thomas GR, DiFabio JM, Gori T, Parker JD (2007) Once daily therapy with isosorbide-5-mononitrate causes endothelial dysfunction in humans: evidence of a free-radical-mediated mechanism. J Am Coll Cardiol 49:1289–1295

    Article  PubMed  CAS  Google Scholar 

  26. Jurt U, Gori T, Ravandi A et al (2001) Differential effects of pentaerythritol tetranitrate and nitroglycerin on the development of tolerance and evidence of lipid peroxidation: a human in vivo study. J Am Coll Cardiol 38:854–859

    Article  PubMed  CAS  Google Scholar 

  27. Gori T, Al-Hesayen A, Jolliffe C, Parker JD (2003) Comparison of the effects of pentaerythritol tetranitrate and nitroglycerin on endothelium-dependent vasorelaxation in male volunteers. Am J Cardiol 91:1392–1394

    Article  PubMed  CAS  Google Scholar 

  28. Wenzel P, Oelze M, Coldewey M et al (2007) Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates. Arterioscler Thromb Vasc Biol 27:1729–1735

    Article  PubMed  CAS  Google Scholar 

  29. Kojda G, Hacker A, Noack E (1998) Effects of nonintermittent treatment of rabbits with pentaerythritol tetranitrate on vascular reactivity and superoxide production. Eur J Pharmacol 355:23–31

    Article  PubMed  CAS  Google Scholar 

  30. Oberle S, Schwartz P, Abate A, Schroder H (1999) The antioxidant defense protein ferritin is a novel and specific target for pentaerithrityl tetranitrate in endothelial cells. Biochem Biophys Res Commun 261:28–34

    Article  PubMed  CAS  Google Scholar 

  31. Oberle S, Abate A, Grosser N et al (2003) Endothelial protection by pentaerithrityl trinitrate: bilirubin and carbon monoxide as possible mediators. Exp Biol Med (Maywood) 228:529–534

    CAS  Google Scholar 

  32. Daiber A, Wenzel P, Oelze M, Munzel T (2008) New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance. Clin Res Cardiol 97:12–20

    Article  PubMed  CAS  Google Scholar 

  33. Daiber A, Wenzel P, Oelze M et al (2009) Mitochondrial aldehyde dehydrogenase (ALDH-2)—maker of and marker for nitrate tolerance in response to nitroglycerin treatment. Chem Biol Interact 178:40–47

    Article  PubMed  CAS  Google Scholar 

  34. Chen Z, Zhang J, Stamler JS (2002) Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci USA 99:8306–8311

    Article  PubMed  CAS  Google Scholar 

  35. Dikalov S, Fink B, Skatchkov M, Bassenge E (1999) Comparison of glyceryl trinitrate-induced with pentaerythrityl tetranitrate-induced in vivo formation of superoxide radicals: effect of vitamin C. Free Radic Biol Med 27:170–176

    Article  PubMed  CAS  Google Scholar 

  36. Schulz S, Oberle-Plümpe S, Grosser N et al (2005) Pentaerythritol tetranitrate reduces free radical formation in endothelial cells and macrophages—involvement of heme oxygenase-1. Naunyn-Schmiedberg's Arch Pharmacol 371:R40

  37. Gori T, Daiber A (2009) Non-hemodynamic effects of organic nitrates and the distinctive characteristics of pentaerithrityl tetranitrate. Am J Cardiovasc Drugs 9:7–15

    PubMed  CAS  Google Scholar 

  38. Pautz A, Rauschkolb P, Schmidt N et al (2009) Effects of nitroglycerin or pentaerithrityl tetranitrate treatment on the gene expression in rat hearts: evidence for cardiotoxic and cardioprotective effects. Physiol Genomics 38:176–185

    Article  PubMed  CAS  Google Scholar 

  39. Thum T, Fraccarollo D, Thum S et al (2007) Differential effects of organic nitrates on endothelial progenitor cells are determined by oxidative stress. Arterioscler Thromb Vasc Biol 27:748–754

    Article  PubMed  CAS  Google Scholar 

  40. Schnorbus B, Schiewe R, Ostad MA et al (2009) Effects of pentaerythritol tetranitrate on endothelial function in coronary artery disease: results of the PENTA study. Clin Res Cardiol 99:115–124

    Article  PubMed  Google Scholar 

  41. Schnell O, Stalleicken D, Marx N (2009) Endothelfunktion und oxidativer Stress bei Diabetes – Nutzen eines Langzeitnitrats. Diabetes, Stoffwechsel und Herz 18:21–27

    Google Scholar 

Download references

Conflict of interest

The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, O., Stalleicken, D., Daiber, A. et al. Endothelial function and oxidative stress in diabetes: active profile of the long-acting nitrate pentaerythritol tetranitrate (PETN). Clin Res Cardiol Suppl 5 (Suppl 1), 35–41 (2010). https://doi.org/10.1007/s11789-010-0015-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11789-010-0015-x

Keywords

Navigation