Skip to main content
Log in

Lyapunov-Based Control for a Swarm of Planar Nonholonomic Vehicles

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

In this paper, we develop a planar Lagrangian swarm model using the Direct Method of Lyapunov to construct the instantaneous velocity of each individual in the swarm. The velocity controllers ensure the cohesion and therefore the stability of the swarm. We introduce novel Lyapunov functions which allow the swarm to navigate in obstacle-free and obstacle-cluttered environments. We apply the methodology to a swarm of planar nonholonomic vehicles. Via computer simulations, we illustrate several self-organizations such as parallel formation, emergent leader, split/rejoin maneuver, and tunnelling for obstacle avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, L.F., Krovi, V.: A Standardized Testing-Ground for Artificial-Field Based Motion Planning for Robot Collectives. Gaithersburg (2006)

  2. Desai J.P.: A graph theoretic approach for modeling mobile robot team formations. J. Robot. Syst. 19, 511–525 (2002)

    Article  MATH  Google Scholar 

  3. Barfoot, T.D., Clark, C.M.: Motion Planning for Formations of Mobile Robots, vol. 46, pp. 65–78. Elsevier, Amsterdam (2004)

  4. Yamaguchi H.: A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations. Robot. Auton. Syst. 43(4), 257–282 (2003)

    Article  Google Scholar 

  5. Song, P., Kumar, V.: A potential field based approach to multi-robot manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation, Washington DC (2002)

  6. Tabuada P., Pappas G.J., Lima P.: Motion feasibility of multi-agent formations. IEEE Trans. Robot. 21, 387–392 (2005)

    Article  Google Scholar 

  7. Dirafzoon, A., Lobaton, E.: Topological mapping of unknown environments using an unlocalized robotic swarm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5545–5551 (2013)

  8. Vanualailai, J., Sharan, A., Sharma, B.: A swarm model for planar formations of multiple autonomous unmanned aerial vehicles. In: Proceedings of the IEEE International Symposium on Intelligent Control (2013)

  9. Meng, Y., Kazeem, O., Muller, J.C.: A hybrid aco/pso control algorithm for distributed swarm robotics. In: Proceedings of 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp. 273–280 (2007)

  10. Kumar, V., Sahin, F.: Cognitive maps in swarm robots for the mine detection application. In: IEEE International Conference on Systems, Man and Cybernetics 2003, vol. 4, pp. 3364–3369 (2003)

  11. Bonebeau E., Theraulaz G., Deneubourg J., Aron S., Camazine S.: Self organisation in social insects. Trends Ecol. Evol. 12(5), 6 (1997)

    Google Scholar 

  12. Vanualailai, J.: Emergent spirograph-like patterns from artificial swarming. In: Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture, pp. 465–468 (2014)

  13. Fleischer, M.: Foundations of swarm intelligence: from principles to practice. In: Proceedings of the Conference on Swarming: Network Enabled C4ISR, Mclean, Virginia (2003)

  14. Garnier S., Gautrais J., Theraulaz G.: The biological principle of swarm intelligence. Swarm Intell. 1(1), 3–31 (2007)

    Article  Google Scholar 

  15. Theraulaz G., Bonabeau E.: Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177(4), 381–400 (1995)

    Article  Google Scholar 

  16. Theraulaz G., Gautrais J., Camazine S., Deneubourg J.: The formation of spatial patterns in social insects: from simple behaviours to complex structures. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361(1807), 1263–1282 (2003)

    Article  MathSciNet  Google Scholar 

  17. Theraulaz G., Bonabeau E., Deneubourg J.: The origin of nest complexity in social insects. Complexity 3(6), 15–25 (1998)

    Article  Google Scholar 

  18. Beckers, R., Holland, O., Deneubourg, J.: From local actions to global tasks: stimergy and collective robotics. In: Proceedings of Artificial life IV, pp. 181–189. MIT Press, Cambridge (1994)

  19. Martinez, S., Cortes, J., Bullo, F.: Motion coordination with distributed information. IEEE Control Syst. 27(4) (2007)

  20. Bullo F., Cort’es S., Martinez S.: Distributed Control of Robotic Networks. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  21. Okubo A., Levin S.A.: Diffusion and Ecological Problems: Modern Perspectives. Interdisciplinary Applied Mathematics. Springer, Berlin (2001)

    Book  Google Scholar 

  22. Edelstein-Keshet, L.: Mathematical models of swarming and social aggregation. In: Proceedings of 2001 International Symposium on Nonlinear Theory and Its Applications, Miyagi, Japan, pp. 1–7 (2001)

  23. Grünbaum, D., Okubo, A.: Modelling social animal aggregations. In: Levin, S.A. (ed) Frontiers in Mathematical Biology, Berlin, pp.296–325 (1994)

  24. Mogilner A., Edelstein-Keshet L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Levin S.A.: Complex adaptive systems: exploring the known, the unknown and the unknowable. Bull. Am. Math. Soc. 40(1), 3–19 (2002)

    Article  Google Scholar 

  26. Mogilner A., Edelstein-Keshet L., Bent L., Spiros A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gazi V., Passino K.M.: Stability analysis of social foraging swarms. IEEE Trans. Syst. Man Cybern. Part B 34(1), 539–557 (2004)

    Article  Google Scholar 

  28. Merrifield, A.J.: An Investigation of Mathematical Models For Animal Group Movement, Using Classical And Statistical Approaches. PhD thesis, University of Sydney, NSW, Australia (2006)

  29. Sharma B., Vanualailai J.: Lyapunov stability of a nonholonomic car-like robotic system. Nonlinear Stud. 14(2), 143–160 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Sharma B., Vanualailai J., Singh S.: Tunnel passing maneuvers of prescribed formations. Int. J. Robust Nonlinear Control 24(5), 876–901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pappas G.J., Kyriakopoulos K.J: Stabilisation of non-holonomic vehicle under kinematic constraints. Int. J. Control 61(4), 933–947 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Raghuwaiya K., Singh S.: Formation types of multiple steerable 1-trailer mobile robots via split/rejoin maneuvers. N. Z. J. Math. 43, 7–21 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Ameet Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.A., Vanualailai, J. & Sharma, B. Lyapunov-Based Control for a Swarm of Planar Nonholonomic Vehicles. Math.Comput.Sci. 9, 461–475 (2015). https://doi.org/10.1007/s11786-015-0243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-015-0243-z

Keywords

Mathematics Subject Classification

Navigation