Skip to main content
Log in

Commuting Tuples of Normal Operators in Hilbert Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we aim to study the tensor product and the tensor sum of two jointly-normal operators. Mainly, an alternative proof is given for the result of Chō and Takaguchi (Pac J Math 95(1):27–35, 1981) asserting that: if \(\mathbf {T}\) is jointly-normal, then \(r(\mathbf {T})=\Vert \mathbf {T}\Vert =\omega (\mathbf {T})\), where \(r(\mathbf {T})\), \(\omega (\mathbf {T})\) and \(\Vert \mathbf {T}\Vert \) denote respectively the joint spectral radius, the joint numerical radius and the joint norm of an operator tuple \(\mathbf {T}\). It seems that this new method allows to handle more general situations, namely the operators acting on semi-hilbertian spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrei, D.: Multicentric holomorphic calculus for \(n\)-tuples of commuting operators. Adv. Oper. Theory 4(2), 447–461 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bhatia, R., Elsner, L., Šemrl, P.: Distance between commuting tuples of normal operators. Arch. Math. 71, 229–232 (1998)

    Article  MathSciNet  Google Scholar 

  3. Baklouti, H., Feki, K.: On joint spectral radius of commuting operators in Hilbert spaces. Linear Algebra Appl. 557, 455–463 (2018)

    Article  MathSciNet  Google Scholar 

  4. Baklouti, H., Feki, K., Ahmed, O.A.M.: Joint normality of operators in semi-Hilbertian spaces. Linear Multilinear Algebra 68(4), 845–866 (2020)

    Article  MathSciNet  Google Scholar 

  5. Baklouti, H., Feki, K., Ahmed, O.A.M.: Joint numerical ranges of operators in semi-Hilbertian spaces. Linear Algebra Appl. 555, 266–284 (2018)

    Article  MathSciNet  Google Scholar 

  6. Berger, M.A., Wang, Y.: Bounded semigroups of matrices. Linear Algebra Appl. 166, 21–27 (1992)

    Article  MathSciNet  Google Scholar 

  7. Bernau, S.J., Smithies, F.: A note on normal operators. Proc. Camb. Philos. Soc 59, 727–729 (1963)

    Article  MathSciNet  Google Scholar 

  8. Bernau, S.J.: The spectral theorem for normal operators. J. Lond. Math. Soc. 40, 478–486 (1965)

    Article  MathSciNet  Google Scholar 

  9. Bunce, J.W.: Models for \(n\)-tuples of noncommuting operators. J. Funct. Anal. 57(1), 21–30 (1984)

    Article  MathSciNet  Google Scholar 

  10. Conway, J.B.: A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 996. Springer, New York (1985)

    Book  Google Scholar 

  11. Chō, M., Takaguchi, M.: Boundary points of joint numerical ranges. Pac. J. Math. 95(1), 27–35 (1981)

    Article  MathSciNet  Google Scholar 

  12. Chō, M., W. \(\grave{{{\rm Z}}}\)elazko, : On geometric spectral radius of commuting n-tuples of operators. Hokkaido Math. J. 21(2), 251–258 (1992)

  13. Chō, M., Curto, R.E., Huruya, T.: \(n\)-Tuples of operators satisfying \(\sigma _T (AB) = \sigma _T(BA)\). Linear Algebra Appl. 341, 291–298 (2002)

    Article  MathSciNet  Google Scholar 

  14. Chō, M., Motoyoshi, H., Nastovska, B.N.: On the joint spectra of commuting tuples of operators and a conjugation. Funct. Anal. Approx. Comput. 9(2), 21–26 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Curto, R.E.: Applications of several complex variables to multiparameter spectral theory. In: Surveys of some recent results in operator theory, Vol. II, volume 192 of Pitman Research Notes in Mathematics Series, pp. 25-90. Longman Scientific & Technical, Harlow (1988)

  16. Curto, R., Lee, S.H.S.H., Yoon, J.: Hyponormality and subnormality for powers of commuting pairs of subnormal operators. J. Funct. Anal. 245, 390–412 (2007)

    Article  MathSciNet  Google Scholar 

  17. Dunford, N., Schwartz, J.T.: Linear Operators, Part I. General Theory. Wiley Interscience, New York (1966)

    MATH  Google Scholar 

  18. Dash, A.T.: Joint spectra. Stud. Math. 45, 225–237 (1973)

    Article  MathSciNet  Google Scholar 

  19. Fuglede, B.: A commutativity theorem for normal operators. Proc. Natl. Acad. Sci. 36, 35–40 (1950)

    Article  MathSciNet  Google Scholar 

  20. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  21. Gil’, M.I.: Regular functions of operators on tensor products of Hilbert spaces. Integral Equ. Oper. Theory 54, 317–331 (2006)

    Article  MathSciNet  Google Scholar 

  22. Halmos, P.R.: A Hilbert Space Problem Book, Graduate Texts in Mathematics. Springer, New York (1982)

    Book  Google Scholar 

  23. Ichinose, T.: Spectral properties of linear operators I. Trans. Am. Math. Soc. 235, 75–113 (1978)

    Article  MathSciNet  Google Scholar 

  24. Kubrusly, C.S.: A concise introduction to tensor product. Far East J. Math. Sci. 22, 137–174 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Kubrusly, C.S., Vieira, P.C.M.: Convergence and decomposition for tensor products of Hilbert space operators. Oper. Matrices 2, 407–416 (2008)

    Article  MathSciNet  Google Scholar 

  26. Kubrusly, C.S., Levan, N.: Preservation of tensor sum and tensor product. Acta Math. Univ. Comenianae 88(1), 133–142 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Müller, V., Soltysiak, A.: Spectral radius formula for commuting Hilbert space operators. Stud. Math. 103, 329–333 (1992)

    Article  MathSciNet  Google Scholar 

  28. Popescu, G.: Unitary Invariants in Multivariable Operator Theory, Memoirs of the American Mathematical Society, vol. 200, no. 941, vi+91 pp (2009)

  29. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces. Springer, New York (2002)

    Book  Google Scholar 

  30. Rota, G.C., Strang, W.G.: A note on the joint spectral radius. Indag. Math. 22, 379–381 (1960)

    Article  MathSciNet  Google Scholar 

  31. Soltysiak, A.: On the joint spectral radii of commuting Banach algebra elements. Stud. Math. 105(1), 93–99 (1993)

    Article  MathSciNet  Google Scholar 

  32. Stochel, J.: Seminormality of operators from their tensor product. Proc. Am. Math. Soc. 124(1), 135–140 (1996)

    Article  MathSciNet  Google Scholar 

  33. Taylor, J.L.: A joint spectrum for several commuting operators. J. Funct. Anal. 6, 172–191 (1970)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author would like to express his cordial gratitude to professor Thierry Gallouët (Aix-Marseille University) for valuable advice and suggestions in the proof of Theorem 4.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kais Feki.

Additional information

Communicated by Victor Vinnikov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baklouti, H., Feki, K. Commuting Tuples of Normal Operators in Hilbert Spaces. Complex Anal. Oper. Theory 14, 56 (2020). https://doi.org/10.1007/s11785-020-01013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-01013-2

Keywords

Mathematics Subject Classification

Navigation