Skip to main content
Log in

Topological Uniform Descent, Quasi-Fredholmness and Operators Originated from Semi-B-Fredholm Theory

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we study operators originated from semi-B-Fredholm theory and as a consequence we get some results regarding boundaries and connected hulls of the corresponding spectra. In particular, we prove that a bounded linear operator T acting on a Banach space, having topological uniform descent, is a BR operator if and only if 0 is not an accumulation point of the associated spectrum \(\sigma _\mathbf{R}(T)=\{\lambda \in \mathbb {C}:T-\lambda I\notin \mathbf{R}\}\), where \(\mathbf{R}\) denote any of the following classes: upper semi-Weyl operators, Weyl operators, upper semi-Fredholm operators, Fredholm operators, operators with finite (essential) descent and \(\mathbf{BR}\) the B-regularity associated to \(\mathbf{R}\) as in Berkani (Studia Mathematica 140(2):163–174, 2000). Under the stronger hypothesis of quasi-Fredholmness of T,  we obtain a similar characterisation for T being a \(\mathbf{BR}\) operator for much larger families of sets \(\mathbf{R}.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  2. Aiena, P., Rosas, E.: Single-valued extension property at the points of the approximate point spectrum. J. Math. Anal. Appl. 279, 180–188 (2003)

    Article  MathSciNet  Google Scholar 

  3. Aiena, P., Triolo, S.: Local spectral theory for Drazin invertible operators. J. Math. Anal. Appl. 435(1), 414–424 (2016)

    Article  MathSciNet  Google Scholar 

  4. Aiena, P., Triolo, S.: Fredholm spectra and Weyl type theorems for Drazin invertible operators. Mediterr. J. Math. 13(6), 4385–4400 (2016)

    Article  MathSciNet  Google Scholar 

  5. Belabbaci, C.: Jeribi essential spectrum. Libertas Mathematica (new series) 37(1), 65–73 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Berkani, M.: On a class of quasi-Fredholm operators. Integr. Equ. Oper. Theory 34, 244–249 (1999)

    Article  MathSciNet  Google Scholar 

  7. Berkani, M.: Restriction of an operator to the range of its powers. Studia Mathematica 140(2), 163–174 (2000)

    Article  MathSciNet  Google Scholar 

  8. Berkani, M., Sarih, M.: On semi B-Frdholm operators. Glasgow Math. J. 43, 457–465 (2001)

    Article  MathSciNet  Google Scholar 

  9. Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl theorem. Proc. Am. Math. Soc. 130(6), 1717–1723 (2002)

    Article  MathSciNet  Google Scholar 

  10. Berkani, M.: B-Weyl spectrum and poles of the resolvent. J. Math. Anal. Appl. 272, 596–603 (2002)

    Article  MathSciNet  Google Scholar 

  11. Berkani, M., Castro, N., Djordjević, S.V.: Single valued extension property and generalized Weyl’s theorem. Math. Bohem. 131(1), 29–38 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Burgos, M., Kaidi, A., Mbekhta, M., Oudghiri, M.: The descent spectrum and perturbations. J. Oper. Theory 56(2), 259–271 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Fredj, O.B.H.: Essential descent spectrum and commuting compact perturbations. Extracta Math. 21(3), 261–271 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Grabiner, S.: Uniform ascent and descent of bounded operators. J. Math. Soc. Jpn. 34(2), 317–337 (1982)

    Article  MathSciNet  Google Scholar 

  15. Grabiner, S., Zemánek, J.: Ascent, descent, and ergodic properties of linear operators. J. Oper. Theory 48, 69–81 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Harte, R.E.: Invertibility and Singularity for Bounded Linear Operators. Marcel Dekker Inc., New York (1988)

    MATH  Google Scholar 

  17. Harte, R.E., Wickstead, A.W.: Boundaries, hulls and spectral mapping theorems. Proc. R. Ir. Acad. 81A, 201–208 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Jeribi, A.: Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer, New York (2015)

    Book  Google Scholar 

  19. Jiang, Q., Zhong, H., Zeng, Q.: Topological uniform descent and localized SVEP. J. Math. Anal. Appl. 390, 355–361 (2012)

    Article  MathSciNet  Google Scholar 

  20. Jiang, Q., Zhong, H., Zhang, S.: Components of topological uniform descent resolvent set and local spectral theory. Linear Algebra Appl. 438, 1149–1158 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kaashoek, M.A.: Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor. Math. Ann. 172, 105–115 (1967)

    Article  MathSciNet  Google Scholar 

  22. Kordula, V., Müller, V.: On the axiomatic theory of spectrum. Studia Math. 119, 109–128 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Mbekhta, M., Müller, V.: On the axiomatic theory of spectrum II. Studia Math. 119(2), 129–147 (1996)

    Article  MathSciNet  Google Scholar 

  24. Miller, T.L., Miller, V.G., Smith, R.C.: Bishop’s property (\(\beta \)) and Cesáro operator. J. Lond. Math. Soc. (2) 58, 197–207 (1998)

    Article  Google Scholar 

  25. Miličić, D., Veselić, K.: On the boundary of essential spectra. Glasnik Mat. 6(26), 73–78 (1971)

    MathSciNet  MATH  Google Scholar 

  26. Müller, V.: Spectral theory of linear operators and spectral systems in Banach algebras. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  27. Rakočević, V.: On one subset of M. Schechter’s essential spectrum. Mat. Vesnik 33, 389–391 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Rakočević, V.: Approximate point spectrum and commuting comact perturbations. Glasgow Math. J. 28, 193–198 (1986)

    Article  MathSciNet  Google Scholar 

  29. Živković-Zlatanović, S.Č., Djordjević, D.S., Harte, R.E.: Polynomially Riesz perturbations. J. Math. Anal. Appl. 408, 442–451 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana Č. Živković-Zlatanović.

Additional information

Communicated by Jussi Behrndt, Fabrizio Colombo, Sergey Naboko.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, Grant No. 174007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Živković-Zlatanović, S.Č., Berkani, M. Topological Uniform Descent, Quasi-Fredholmness and Operators Originated from Semi-B-Fredholm Theory. Complex Anal. Oper. Theory 13, 3595–3622 (2019). https://doi.org/10.1007/s11785-019-00920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-019-00920-3

Keywords

Mathematics Subject Classification

Navigation