We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

The Schwarz Type Lemmas and the Landau Type Theorem of Mappings Satisfying Poisson’s Equations

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

For a given continuous function \(g:~\overline{\mathbb {D}}\rightarrow {\mathbb {C}}\) and a given continuous function \(\psi :~{\mathbb {T}}\rightarrow {\mathbb {C}}\), we establish some Schwarz type Lemmas for mappings f satisfying the PDE: \(\Delta f=g\) in \({\mathbb {D}}\), and \(f=\psi \) in \({\mathbb {T}}\), where \({\mathbb {D}}\) is the unit disk of the complex plane \({\mathbb {C}}\) and \({\mathbb {T}}=\partial {\mathbb {D}}\) is the unit circle. Then we apply these results to obtain a Landau type theorem, which is a partial answer to the open problem in Chen and Ponnusamy (Bull Aust Math Soc 97: 80–87, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulhadi, Z., Abu Muhanna, Y.: Landau’s theorem for biharmonic mappings. J. Math. Anal. Appl. 338, 705–709 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. In: Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, p. xviii+677 (2009)

  3. Bonk, M., Eremenko, A.: Covering properties of meromorphic functions, negative curvature and spherical geometry. Ann. Math. 152, 551–592 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonk, M.: On Bloch’s constant. Proc. Am. Math. Soc. 378, 889–894 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Brody, R.: Compact manifolds and hyperbolicity. Trans. Am. Math. Soc. 235, 213–219 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Burns, D.M., Krantz, S.G.: Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J. Am. Math. Soc. 7, 661–676 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Gauthier, P.M., Hengartner, W.: Bloch constants for planar harmonic mappings. Proc. Am. Math. Soc. 128, 3231–3240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H., Gauthier, P.M.: The Landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings. Proc. Am. Math. Soc. 139, 583–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Sh, Ponnusamy, S., Wang, X.: On planar harmonic Lipschitz and planar harmonic Hardy classes. Ann. Acad. Sci. Fenn. Math. 36, 567–576 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Sh, Ponnusamy, S., Wang, X.: Bloch constant and Landau’s theorems for planar p-harmonic mappings. J. Math. Anal. Appl. 373, 102–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Sh, Vuorinen, M.: Some properties of a class of elliptic partial differential operators. J. Math. Anal. Appl. 431, 1124–1137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Sh, Ponnusamy, S., Rasila, A., Wang, X.: Linear connectivity, Schwarz–Pick lemma and univalency criteria for planar harmonic mappings. Acta Math. Sin. Engl. Ser. 32, 297–308 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Sh, Ponnusamy, S.: Landau’s theorem for solutions of the \(\overline{\partial }\)-equation in Dirichlet-type spaces. Bull. Aust. Math. Soc. 97, 80–87 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colonna, F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38, 829–840 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garnett, J.: Bounded Analytic Functions. Academic Press, New York (1981)

    MATH  Google Scholar 

  16. Gauthier, P.M., Pouryayevali, M.R.: Failure of Landau’s theorem for quasiconformal mappings of the disc. Contemporay Math. 355, 265–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heinz, E.: On one-to-one harmonic mappings. Pac. J. Math. 9, 101–105 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hörmander, L.: Notions of Convexity. Progress in Mathematics, vol. 127. Birkhäuser Boston Inc, Boston (1994)

    MATH  Google Scholar 

  19. Kalaj, D., Pavlović, M.: On quasiconformal self-mappings of the unit disk satisfying Poisson’s equation. Trans. Am. Math. Soc. 363, 4043–4061 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalaj, D.: Cauchy transform and Poisson’s equation. Adv. Math. 231, 213–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kalaj, D.: Heinz–Schwarz inequalities for harmonic mappings in the unit ball. Ann. Acad. Sci. Fenn. Math. 41, 457–464 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kalaj, D.: On some integral operators related to the Poisson equation. Integral Equ. Oper. Theory 72, 563–575 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krantz, S.G.: The Schwarz lemma at the boundary. Complex Var. Elliptic Equ. 56, 455–468 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Landau, E.: Über die Bloch’sche konstante und zwei verwandte weltkonstanten. Math. Z. 30, 608–634 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, X.Y., Minda, C.D.: Distortion theorems for Bloch functions. Trans. Am. Math. Soc. 333, 325–338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, T.S., Wang, J.F., Tang, X.M.: Schwarz lemma at the boundary of the unit ball in \({\mathbb{C}}^{n}\) and its applications. J. Geom. Anal. 25, 1890–1914 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, T.S., Tang, X.M.: Schwarz lemma at the boundary of strongly pseudoconvex domain in \({\mathbb{C}}^{n}\). Math. Ann. 366, 655–666 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Minda, D.: Bloch constants. J. Analyse Math. 41, 54–84 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Minda, D.: Marden constants for Bloch and normal functions. J. Analyse Math. 42, 117–127 (1982/1983)

  30. Pavlović, M.: Introduction to Function Spaces on the Disk. Matemati\(\breve{\text{c}}\)ki institut SANU, Belgrade (2004)

  31. Talvila, E.: Necessary and sufficient conditions for differentiating under the integral sign. Am. Math. Mon. 108, 544–548 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, H.: Normal families of holomorphic mappings. Acta Math. 119, 193–233 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zalcman, L.: Normal families: new perspectives. Bull. Am. Math. Soc. 35, 215–230 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for providing constructive comments and help in improving this paper. This research was partly supported by the Science and Technology Plan Project of Hengyang City (No. 2018KJ125), the National Natural Science Foundation of China (No. 11571216), the Science and Technology Plan Project of Hunan Province (No. 2016TP1020), the Science and Technology Plan Project of Hengyang City (No. 2017KJ183), and the Application-Oriented Characterized Disciplines, Double First-Class University Project of Hunan Province (Xiangjiaotong [2018]469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolin Chen.

Additional information

Communicated by Vladimir Bolotnikov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Kalaj, D. The Schwarz Type Lemmas and the Landau Type Theorem of Mappings Satisfying Poisson’s Equations. Complex Anal. Oper. Theory 13, 2049–2068 (2019). https://doi.org/10.1007/s11785-019-00911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-019-00911-4

Keywords

Mathematics Subject Classification

Navigation