Skip to main content
Log in

The Jumping Operator on Invariant Subspaces in Spaces of Analytic Functions

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Let D denote the Dirichlet space of holomorphic functions f in the open unit disc \(\mathbb {D}\) with finite Dirichlet integral, \(\int _\mathbb {D}|f'|^2 dA < \infty \). For an \(M_z\)-invariant subspace \(\mathcal {M}\) of D we study the jumping operator \(P_\mathcal {M}M_z P_\mathcal {M}^{\perp }\) from the orthogonal complement of \(\mathcal {M}\) to \(\mathcal {M}\). We show that the jumping operator is in Schatten p-class for \(p > 1\) and we obtain that for a zero-based invariant subspace \(\mathcal {M}\) of D, the rank of the jumping operator is finite if and only if \(\mathcal {M}\) is of finite codimension. We also prove that there are invariant subspaces of D which have infinite codimension such that the corresponding jumping operators have finite rank. Furthermore, we show that some similar results hold in the setting of the Bergman space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleman, A.: The Multiplication Operator on Hilbert Spaces of Analytic Function, Habilitation. Fernuniversitaet, Hagen (1993)

    Google Scholar 

  2. Aleman, A., Richter, S., Sundberg, C.: The majorization function and the index of invariant subspaces in the Bergman spaces. J. Anal. Math. 86, 139–182 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Arveson, W.B.: Subalgebras of \(C^*\)-algebras. Acta Math. 123, 141–224 (1969)

    MathSciNet  MATH  Google Scholar 

  4. Arveson, W.B.: The curvature invariant of a Hilbert module over \({\mathbb{C}}[z_1,\ldots, z_d]\). J. Reine Angew. Math. 522, 173–236 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Arveson, W.B.: \(p\)-summable commutators in dimension \(d\). J. Oper. Theory 54(1), 101–117 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Chailos, G.: Reproducing kernels and invariant subspaces of the Bergman shift. J. Oper. Theory 51(1), 181–200 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Conway, J.B.: The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36. American Mathematical Society, Providence (1991)

    Google Scholar 

  8. El-Fallah, O., Kellay, K., Ransford, T.: On the Brown–Shields conjecture for cyclicity in the Dirichlet space. Adv. Math. 222(6), 2196–2214 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Fang, X.: On a question of Arveson about ranks of Hilbert modules, 25 (2001). arXiv:math/0104246

  10. Guo, K.: Defect operators for submodules of \(H^2_d\). J. Reine Angew. Math. 573, 181–209 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Guo, K., Wang, K.: Essentially normal Hilbert modules and K-homology. Math. Ann. 340(4), 907–934 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Halmos, P.R.: Irreducible operators. Mich. Math. J. 15, 215–223 (1968)

    MathSciNet  MATH  Google Scholar 

  13. Hedenmalm, H.: Spectral properties of invariant subspaces in the Bergman space. J. Funct. Anal. 116(2), 441–448 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Martin, M., Putinar, M.: Lectures on Hyponormal Operators. Operator Theory: Advances and Applications, vol. 39. Birkhäuser Verlag, Basel (1989)

    MATH  Google Scholar 

  15. McCullough, S., Richter, S.: Bergman-type reproducing kernels, contractive divisors, and dilations. J. Funct. Anal. 190(2), 447–480 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Luo, S., Richter, S.: Hankel operators and invariant subspaces of the Dirichlet space. J. Lond. Math. Soc. (2) 91(2), 423–438 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Richter, S.: Invariant subspaces in Banach spaces of analytic functions. Trans. Am. Math. Soc. 304(2), 585–616 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Richter, S., Shields, A.: Bounded analytic functions in the Dirichlet space. Math. Z. 198(2), 151–159 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Richter, S.: A representation theorem for cyclic analytic two-isometries. Trans. Am. Math. Soc. 328(1), 325–349 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Richter, S., Sundberg, C.: A formula for the local Dirichlet integral. Mich. Math. J. 38, 355–379 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Richter, S., Sundberg, C.: Multipliers and invariant subspaces in the Dirichlet space. J. Oper. Theory 28(1), 167–186 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Richter, S., Sundberg, C.: Invariant subspaces of the Dirichlet shift and pseudocontinuations. Trans. Am. Math. Soc. 341(2), 863–879 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Yang, R., Zhu, K.: The root operator on invariant subspaces of the Bergman space. Ill. J. Math. 47(4), 1227–1242 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Stefan Richter for drawing the author’s attention to reference [3] and his useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuaibing Luo.

Additional information

Communicated by Daniel Aron Alpay.

This work is supported by NNSF of China (Grant No. 11701167).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S. The Jumping Operator on Invariant Subspaces in Spaces of Analytic Functions. Complex Anal. Oper. Theory 13, 3501–3519 (2019). https://doi.org/10.1007/s11785-018-0818-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-018-0818-1

Keywords

Mathematics Subject Classification

Navigation