1 Introduction

Let \(\mathbb D(a,r):=\{z\in \mathbb C:|z-a|<r\}\) and \(\mathbb T(a,r):=\{z\in \mathbb C:|z-a|=r\}\) for \(a\in \mathbb C\) and \(r>0\). In particular \(\mathbb D:=\mathbb D(0,1)\) and \(\mathbb T:=\mathbb T(0,1)\) are the unit disk and unit circle, respectively. We denote by \(\mathrm {Har}(\mathbb D)\) the class of all complex-valued harmonic functions in \(\mathbb D\), i.e., the class of twice continuously differentiable functions \(F\) in \(\mathbb D\) satisfying the Laplace equation

$$\begin{aligned} \frac{\partial ^2}{\partial x^2}F(z)+\frac{\partial ^2}{\partial y^2}F(z)=0,\quad z=x+\mathrm {i} y\in \mathbb D. \end{aligned}$$

In 1959 E. Heinz proved in [5] that for every \(F\in \mathrm {Har}(\mathbb D)\), if \(F(\mathbb D)\subset \mathbb D\) and \(F(0)=0\), then

$$\begin{aligned} |F(z)|\le \frac{4}{\pi }\arctan |z|,\quad z\in \mathbb D ; \end{aligned}$$
(1.1)

cf. also [4, p. 77] and [8]. Moreover, the above estimate is sharp. The equality in (1.1) holds if

$$\begin{aligned} F(\zeta )=\mathrm {Re}\biggl [\frac{2\mathrm {i}}{\pi }\log \frac{1+\zeta }{1-\zeta }\biggr ],\quad \zeta \in \mathbb D , \end{aligned}$$
(1.2)

and if \(z\in \mathbb D\cap \mathbb R\). This result can be treated as a counterpart of the well known Schwarz lemma where holomorphic mappings are replaced by the harmonic ones. The estimation (1.1) can be essentially improved under the additional assumption that \(F\) is a quasiconformal mapping of \(\mathbb D\) onto itself; cf. [8, Thm. 3.3] where the bound of \(|F(z)|\) depends on the maximal dilatation \(K\) of \(F\).

In this paper we intend to find a sort of the estimation (1.1) for \(F\in \mathrm {Har}(\mathbb D)\) where the normalization condition \(F(0)=0\) is replaced by a certain boundary one described in Corollary 2.2. Its proof appeals to Theorem 2.1 which gives a Schwarz type estimation for \(F\) determined by the Poisson integral of a certain function \(f:\mathbb T\rightarrow \mathrm {cl}(\mathbb D)\). Here and subsequently, the symbol \(\mathrm {cl}(A)\) stands for the closure of a set \(A\subset \mathbb C\) in the Euclidian topology. From Corollary 2.2 we infer Corollary 2.4, which deals with harmonic injective mappings of \(\mathbb D\) onto itself. In particular, Corollary 2.4 leads to the following result: If \(F\) is a continuous function in the closed disk \(\mathrm {cl}(\mathbb D)\) onto itself, harmonic and injective in \(\mathbb D\), and normalized by

$$\begin{aligned} F(e_k)=e_k:=\mathrm {e}^{2\pi \mathrm {i} k/3} ,\quad k\in \{0,1,2\} , \end{aligned}$$
(1.3)

then

$$\begin{aligned} |F(z)|\le \frac{2}{\pi }\arctan \biggl (\sqrt{3}\frac{1+|z|}{1-|z|}\biggr ),\quad z\in \mathbb D. \end{aligned}$$
(1.4)

This is a direct consequence of Corollary 2.4. The right hand side of the inequality in (1.4) can be replaced by the right hand side of the equality in (2.35) or (2.36); cf. Remark 2.5. The estimations (2.5) and (2.29) are sharp. The extremal functions are described in the last section; cf. Theorem 3.3 and Corollary 3.4.

2 The Schwarz Type Inequalities

Given an integrable function \(f:\mathbb T\rightarrow \mathbb C\) we denote by \(\mathrm {P}[f](z)\) the Poisson integral of \(f\) at \(z\in \mathbb D\), i.e.,

$$\begin{aligned} \mathrm {P}[f](z):=\frac{1}{2\pi }\int _{\mathbb T}f(u)\mathrm {Re}\frac{u+z}{u-z}|\mathrm {d} u| , \quad z\in \mathbb D\ . \end{aligned}$$
(2.1)

Here and in the sequel integrable means integrable in the sense of Lebesgue. The Poisson integral \(\mathrm {P}[f]\) is the unique solution to the Dirichlet problem for the unit disk \(\mathbb D\) provided the boundary function \(f\) is continuous; cf. e.g. [7, Thm. 2.11]. This means that \(\mathrm {P}[f]\) is a harmonic mapping in \(\mathbb D\) which has a continuous extension to the closed disk \(\mathrm {cl}(\mathbb D)\) and its boundary limiting valued function is identical with \(f\). Since

$$\begin{aligned} \mathrm {Re}\frac{u+z}{u-z}&=\mathrm {Re}\frac{(u+z)\overline{(u-z)}}{|u-z|^2}=\frac{|u|^2-|z|^2}{|u|^2-2\mathrm {Re}(u\overline{z})+|z|^2} \\&=\frac{1-|z|^2}{1-2\mathrm {Re}(z\overline{u})+|z|^2},\quad u\in \mathbb T\,,\,z\in \mathbb D , \end{aligned}$$

we conclude from (2.1) that

$$\begin{aligned} \mathrm {P}[f](r\mathrm {e}^{\mathrm {i}\theta })=\int _0^{2\pi }\mathrm {P}_r(\theta -t)f(\mathrm {e}^{\mathrm {i} t})\mathrm {d} t , \quad r\mathrm {e}^{\mathrm {i}\theta }\in \mathbb D , \end{aligned}$$
(2.2)

where

$$\begin{aligned} \mathrm {P}_r(t):=\frac{1}{2\pi }\frac{1-r^2}{1-2r\cos t+r^2} , \quad r\mathrm {e}^{\mathrm {i} t}\in \mathbb D , \end{aligned}$$

Setting \(I_k:=[2\pi k/3;2\pi (k+1)/3]\) for \(k\in \{0,1,2\}\) we define

$$\begin{aligned} T_k:=\{\mathrm {e}^{\mathrm {i} t}:t\in I_k\}\quad \text {and}\quad D_k:=\{r\mathrm {e}^{\mathrm {i} t}:t\in I_k\,,\,r\in [0;1]\} ,\quad k\in \{0,1,2\}. \end{aligned}$$
(2.3)

Theorem 2.1

For any integrable function \(f:\mathbb T\rightarrow \mathbb C\), if

$$\begin{aligned} f(z)\in D_k\quad \text {for a.e.}\ z\in T_k ,\quad k\in \{1,2,3\} , \end{aligned}$$
(2.4)

then

$$\begin{aligned} |\mathrm {P}[f](z)|\le \frac{4}{3}-\frac{2}{\pi }\arctan \biggl (\frac{\sqrt{3}}{1+2|z|}\biggr ),\quad z\in \mathbb D , \end{aligned}$$
(2.5)

and the estimation is sharp.

Proof

Given a function \(f:\mathbb T\rightarrow \mathbb C\) satisfying the condition (2.4) we consider the function \(F:=\mathrm {P}[f]\). Fix \(r\in [0;1)\). Since the function \(\mathbb R\ni \theta \mapsto |F(r\mathrm {e}^{\mathrm {i}\theta })|\) is continuous and \(2\pi \)-periodical we have

$$\begin{aligned} |F(r\mathrm {e}^{\mathrm {i}\theta })|\le |F(r\mathrm {e}^{\mathrm {i}\theta _r})|,\quad \theta \in \mathbb R , \end{aligned}$$
(2.6)

for a certain \(\theta _r\in [0;2\pi )\). On the other hand, there exists \(\alpha \in [0;2\pi )\) such that

$$\begin{aligned} F(r\mathrm {e}^{\mathrm {i}\theta _r})=\mathrm {e}^{\mathrm {i}\alpha }|F(r\mathrm {e}^{\mathrm {i}\theta _r})|\ . \end{aligned}$$
(2.7)

Therefore

$$\begin{aligned} |F(r\mathrm {e}^{\mathrm {i}\theta _r})|=\mathrm {Re}\bigl (\mathrm {e}^{-\mathrm {i}\alpha }F(r\mathrm {e}^{\mathrm {i}\theta _r})\bigr )\ . \end{aligned}$$

Hence and by (2.6),

$$\begin{aligned} |F(r\mathrm {e}^{\mathrm {i}\theta })|\le \mathrm {Re}\bigl (\mathrm {e}^{-\mathrm {i}\alpha }F(r\mathrm {e}^{\mathrm {i}\theta _r})\bigr )=\mathrm {Re}\bigl (\mathrm {e}^{-\mathrm {i}\alpha }\mathrm {P}[f](r\mathrm {e}^{\mathrm {i}\theta _r})\bigr ). \end{aligned}$$
(2.8)

Setting

$$\begin{aligned} p_k:=\int _{I_k}\mathrm {P}_r(\theta _r-t)\mathrm {d} t ,\quad k\in \{0,1,2\} , \end{aligned}$$
(2.9)

we conclude from the formula (2.2) that

$$\begin{aligned} \mathrm {P}[f](r\mathrm {e}^{\mathrm {i}\theta _r})&=\int _0^{2\pi }\mathrm {P}_r(\theta _r-t)f(\mathrm {e}^{\mathrm {i} t})\mathrm {d} t \nonumber \\&=\sum _{k=0}^2p_k\int _{I_k}\frac{1}{p_k}\mathrm {P}_r(\theta _r-t)f(\mathrm {e}^{\mathrm {i} t})\mathrm {d} t. \end{aligned}$$
(2.10)

Since each sector \(D_k\), \(k\in \{0,1,2\}\), is closed and convex in \(\mathbb C\) we conclude from the assumption (2.4) and the integral mean value theorem for complex-valued functions that there exist \(\alpha _k\in I_k\) and \(r_k\in [0;1]\) for \(k\in \{0,1,2\}\) such that

$$\begin{aligned} r_k\mathrm {e}^{\mathrm {i}\alpha _k}=\int _{I_k}\frac{1}{p_k}\mathrm {P}_r(\theta _r-t)f(\mathrm {e}^{\mathrm {i} t})\mathrm {d} t ,\quad k\in \{0,1,2\}. \end{aligned}$$
(2.11)

Combining this with (2.8) and (2.10) we obtain

$$\begin{aligned} |F(r\mathrm {e}^{\mathrm {i}\theta })|\le \mathrm {Re}\left[ \mathrm {e}^{-\mathrm {i}\alpha }\sum _{k=0}^2p_k r_k\mathrm {e}^{\mathrm {i}\alpha _k}\right] =\sum _{k=0}^2 c_k p_k,\quad \theta \in \mathbb R , \end{aligned}$$
(2.12)

where

$$\begin{aligned} c_k:=\mathrm {Re}\bigl (\mathrm {e}^{-\mathrm {i}\alpha }r_k\mathrm {e}^{\mathrm {i}\alpha _k})\bigr )=r_k\mathrm {Re}\bigl (\mathrm {e}^{\mathrm {i}(\alpha _k-\alpha )}\bigr )=r_k\cos (\alpha _k-\alpha ),\quad k\in \{0,1,2\}. \end{aligned}$$
(2.13)

If \(\min (\{c_0,c_1,c_2)\}\le 0\), then clearly

$$\begin{aligned} c_0+c_1+c_2\le 2. \end{aligned}$$
(2.14)

Therefore, we can assume that all \(c_0,c_1,c_2\) are positive, and consequently

$$\begin{aligned} c_k\le \cos (\alpha _k-\alpha ) ,\quad k\in \{0,1,2\} , \end{aligned}$$
(2.15)

because \(r_k\in [0;1]\) for \(k\in \{0,1,2\}\). Since \(\alpha _k\in I_k\) for \(k\in \{0,1,2\}\), we see that

$$\begin{aligned} \frac{2\pi k}{3}-\alpha \le \alpha _k-\alpha \le \frac{2\pi (k+1)}{3}-\alpha ,\quad k\in \{0,1,2\}. \end{aligned}$$
(2.16)

If \(0\le \alpha \le 2\pi /3\), then by (2.15) and (2.16),

$$\begin{aligned} c_0\le 1 ,\quad c_1\le \cos \Bigl (\frac{2\pi }{3}-\alpha \Bigr ) \quad \text {and}\quad c_2\le \cos (2\pi -\alpha )=\cos (\alpha ) , \end{aligned}$$

and so

$$\begin{aligned} c_0+c_1+c_2\le 1+\cos \Bigl (\frac{2\pi }{3}-\alpha \Bigr )+\cos (\alpha )=1+2\cos \frac{\pi }{3}\cos \Bigl (\frac{\pi }{3}-\alpha \Bigr )\le 2\ . \end{aligned}$$

If \(2\pi /3\le \alpha \le 4\pi /3\), then by (2.15) and (2.16),

$$\begin{aligned} c_0\le \cos \Bigl (\frac{2\pi }{3}-\alpha \Bigr ) ,\quad c_1\le 1 \quad \text {and}\quad c_2\le \cos \Bigl (\frac{4\pi }{3}-\alpha \Bigr ) , \end{aligned}$$

and so

$$\begin{aligned} c_0+c_1+c_2\le 1+\cos \Bigl (\frac{2\pi }{3}-\alpha \Bigr )+\cos \Bigl (\frac{4\pi }{3}-\alpha \Bigr )=1+2\cos \frac{\pi }{3}\cos (\pi -\alpha )\le 2\ . \end{aligned}$$

If \(4\pi /3\le \alpha \le 2\pi \), then by (2.15) and (2.16),

$$\begin{aligned} c_0\le \cos (\alpha ) ,\quad c_1\le \cos \Bigl (\frac{4\pi }{3}-\alpha \Bigr ) \quad \text {and}\quad c_2\le 1 , \end{aligned}$$

and so

$$\begin{aligned} c_0+c_1+c_2\le 1+\cos (\alpha )+\cos \Bigl (\frac{4\pi }{3}-\alpha \Bigr )=1+2\cos \frac{2\pi }{3}\cos \Bigl (\frac{2\pi }{3}-\alpha \Bigr )\le 2\ . \end{aligned}$$

Thus in all the cases the inequality (2.14) holds. In order to estimate the last sum in (2.12) we consider the function

$$\begin{aligned} \mathbb R\ni \theta \mapsto Q_r(\theta ):=\int _{2\pi /3}^{4\pi /3}\mathrm {P}_r(\theta -t)\mathrm {d} t=\mathrm {P}[{\chi }_{T_1}](r\mathrm {e}^{\mathrm {i}\theta }), \end{aligned}$$
(2.17)

where \({\chi }_A\) is the characteristic function of a set \(A\subset \mathbb T\), i.e., \({\chi }_A(t):=1\) for \(t\in A\) and \({\chi }_A(t):=0\) for \(t\in \mathbb T{\setminus }A\). Throughout the paper we understand the function \(\log \) as the inverse function to \(\exp _{|\Omega }\), where \(\Omega :=\{z\in \mathbb C:|\mathrm {Im} z|<\pi \}\). Given \(z\in \mathbb D\) we see that \(T_1\subset \Omega _z:=\mathbb C\setminus \{z+t:t>0\}\), the function \(\Omega _z\ni \zeta \mapsto \log (z-\zeta )\) is holomorphic and

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d} t}\log (z-\mathrm {e}^{\mathrm {i} t})=\frac{\mathrm {i}\mathrm {e}^{\mathrm {i} t}}{\mathrm {e}^{\mathrm {i} t}-z} ,\quad t\in I_1. \end{aligned}$$

Hence and by the formula (2.1) we see that

$$\begin{aligned} \mathrm {P}[{\chi }_{T_1}](z)&=\frac{1}{2\pi }\int _{T_1}{\chi }_{T_1}(u)\mathrm {Re}\frac{u+z}{u-z}|\mathrm {d} u| \\&=\frac{1}{2\pi }\int _{2\pi /3}^{4\pi /3}\mathrm {Re}\frac{\mathrm {e}^{\mathrm {i} t}+z}{\mathrm {e}^{\mathrm {i} t}-z}\mathrm {d} t \\&=\frac{1}{2\pi }\int _{2\pi /3}^{4\pi /3}\mathrm {Re}\Bigl (\frac{2\mathrm {e}^{\mathrm {i} t}}{\mathrm {e}^{\mathrm {i} t}-z}-1\Bigr )\mathrm {d} t \\&=\frac{1}{\pi }\int _{2\pi /3}^{4\pi /3}\mathrm {Im}\Bigl (\frac{\mathrm {i}\mathrm {e}^{\mathrm {i} t}}{\mathrm {e}^{\mathrm {i} t}-z}\Bigr )\mathrm {d} t-\frac{1}{3} \\&=\frac{1}{\pi }\int _{2\pi /3}^{4\pi /3}\mathrm {Im}\frac{\mathrm {d}}{\mathrm {d} t}\log (z-\mathrm {e}^{\mathrm {i} t})\mathrm {d} t-\frac{1}{3} \\&=\frac{1}{\pi }\mathrm {Im}\bigl [\log (z-e_2)-\log (z-e_1)\bigr ]-\frac{1}{3}. \end{aligned}$$

Hence and by (2.17),

$$\begin{aligned} Q_r(\theta )=\frac{1}{\pi }\mathrm {Im}\bigl [\log (r\mathrm {e}^{\mathrm {i}\theta }-e_2)-\log (r\mathrm {e}^{\mathrm {i}\theta }-e_1)\bigr ]-\frac{1}{3},\quad \theta \in \mathbb R , \end{aligned}$$
(2.18)

and consequently,

$$\begin{aligned} \frac{\mathrm {d}}{\mathrm {d}\theta }Q_r(\theta )&=\frac{1}{\pi }\mathrm {Im}\Bigl [\frac{\mathrm {i} r\mathrm {e}^{\mathrm {i}\theta }}{r\mathrm {e}^{\mathrm {i}\theta }-e_2}-\frac{\mathrm {i} r\mathrm {e}^{\mathrm {i}\theta }}{r\mathrm {e}^{\mathrm {i}\theta }-e_1}\Bigr ]\nonumber \\ \nonumber&=\frac{r}{\pi }\mathrm {Im}\Bigl [\frac{\mathrm {i}\mathrm {e}^{\mathrm {i}\theta }(e_2-e_1)}{(r\mathrm {e}^{\mathrm {i}\theta }-e_2)(r\mathrm {e}^{\mathrm {i}\theta }-e_1)}\Bigr ] \\ \nonumber&=\frac{r\sqrt{3}}{\pi }\frac{\mathrm {Im}[\mathrm {e}^{\mathrm {i}\theta }(r\mathrm {e}^{-\mathrm {i}\theta }-e_1)(r\mathrm {e}^{-\mathrm {i}\theta }-e_2)}{|r\mathrm {e}^{\mathrm {i}\theta }-e_2|^2|r\mathrm {e}^{\mathrm {i}\theta }-e_1|^2} \\ \nonumber&=\frac{r\sqrt{3}}{\pi }\frac{\mathrm {Im}[r^2\mathrm {e}^{-\mathrm {i}\theta }+r+\mathrm {e}^{\mathrm {i}\theta }]}{|r\mathrm {e}^{\mathrm {i}\theta }-e_2|^2|r\mathrm {e}^{\mathrm {i}\theta }-e_1|^2} \\&=\frac{r\sqrt{3}(1-r^2)\sin \theta }{\pi |r\mathrm {e}^{\mathrm {i}\theta }-e_2|^2|r\mathrm {e}^{\mathrm {i}\theta }-e_1|^2},\quad \theta \in \mathbb R. \end{aligned}$$
(2.19)

Combining this with (2.18) we obtain

$$\begin{aligned} Q_r(\theta )\ge Q_r(0)&=\frac{1}{\pi }\mathrm {Im}\bigl [\log (r-e_2)-\log (r-e_1)\bigr ]-\frac{1}{3} \nonumber \\&=\frac{2}{\pi }\arctan \frac{\sqrt{3}}{1+2r}-\frac{1}{3},\quad \theta \in \mathbb R. \end{aligned}$$
(2.20)

Combining (2.9) with (2.17) we have

$$\begin{aligned} \begin{aligned} p_0&=\int _{I_0}\mathrm {P}_r(\theta _r-t)\mathrm {d} t=\int _{I_1}\mathrm {P}_r(\theta _r+2\pi /3-t)\mathrm {d} t=Q_r(\theta _r+2\pi /3) , \\ p_1&=\int _{I_1}\mathrm {P}_r(\theta _r-t)\mathrm {d} t=Q_r(\theta _r), \\ p_2&=\int _{I_2}\mathrm {P}_r(\theta _r-t)\mathrm {d} t=\int _{I_1}\mathrm {P}_r(\theta _r-2\pi /3-t)\mathrm {d} t=Q_r(\theta _r-2\pi /3). \end{aligned} \end{aligned}$$
(2.21)

Hence and by (2.20),

$$\begin{aligned} \min (\{p_0,p_1,p_2\})\ge Q_r(0)=\frac{2}{\pi }\arctan \frac{\sqrt{3}}{1+2r}-\frac{1}{3}. \end{aligned}$$
(2.22)

From (2.9) it follows that

$$\begin{aligned} p_0+p_1+p_2=\sum _{k=0}^2\int _{I_k}\mathrm {P}_r(\theta _r-t)\mathrm {d} t=\int _0^{2\pi }\mathrm {P}_r(\theta _r-t)\mathrm {d} t=1. \end{aligned}$$
(2.23)

This together with (2.22), (2.14) and (2.15) leads to

$$\begin{aligned} \sum _{k=0}^2 c_k p_k&=\sum _{k=0}^2(p_k-Q_r(0))c_k+\sum _{k=0}^2 Q_r(0)c_k \nonumber \\ \nonumber&\le \sum _{k=0}^2(p_k-Q_r(0))+Q_r(0)\sum _{k=0}^2 c_k \\ \nonumber&\le \sum _{k=0}^2 p_k-\sum _{k=0}^2 Q_r(0)+2Q_r(0) \\&=1-Q_r(0). \end{aligned}$$
(2.24)

Combining (2.12) with (2.24) and (2.20) we infer the estimation (2.5). It is clear that the function

$$\begin{aligned} f_0:={\chi }_{T_0\cup T_2} \end{aligned}$$
(2.25)

satisfies the condition (2.4) with \(f:=f_0\). From the formula (2.17) it follows that for every \(z=r\mathrm {e}^{\mathrm {i}\theta }\in \mathbb D\),

$$\begin{aligned} \mathrm {P}[f_0](z)=\mathrm {P}[{\chi }_{\mathbb T{\setminus }T_1}](z)=\mathrm {P}[{\chi }_{\mathbb T}-{\chi }_{T_1}](z)=1-\mathrm {P}[{\chi }_{T_1}](z)=1-Q_r(\theta )\ . \end{aligned}$$
(2.26)

Hence and by the equalities in (2.20) we conclude that

$$\begin{aligned} \mathrm {P}[f_0](r)=1-Q_r(0)=\frac{4}{3}-\frac{2}{\pi }\arctan \frac{\sqrt{3}}{1+2r},\quad r\in [0;1). \end{aligned}$$
(2.27)

This means that \(f_0\) is an extremal function in Theorem 2.1, and so the estimation (2.5) is sharp, which completes the proof. \(\square \)

Now we are ready to prove our main result.

Corollary 2.2

Let \(F\in \mathrm {Har}(\mathbb D)\) satisfy \(F(\mathbb D)\subset \mathbb D\) and for every \(k\in \{0,1,2\}\),

$$\begin{aligned} \lim _{r\rightarrow 1^-}F(rz)\in D_k\quad \text {for a.e.}\ z\in T_k\cap \Lambda (F) , \end{aligned}$$
(2.28)

where \(\Lambda (F)\) is the set of all \(z\in \mathbb T\) such that the limit exists. Then

$$\begin{aligned} |F(z)|\le \frac{4}{3}-\frac{2}{\pi }\arctan \biggl (\frac{\sqrt{3}}{1+2|z|}\biggr ) ,\quad z\in \mathbb D , \end{aligned}$$
(2.29)

and the estimation is sharp.

Proof

Fix a harmonic function \(F:\mathbb D\rightarrow \mathbb D\) satisfying the assumptions of the theorem. Then \(\mathrm {Re} F\) and \(\mathrm {Im} F\) are real-valued and bounded harmonic functions in \(\mathbb D\), and so they have a radial limit a.e. in \(\mathbb T\); cf. [3, Cor. 1, Sect. 1.2]. Therefore, there exists the limit in (2.28) for a.e. \(z\in \mathbb T\). Setting

$$\begin{aligned} \mathbb T\ni z\mapsto f(z):={\left\{ \begin{array}{ll} \lim \limits _{r\rightarrow 1^-}F(rz) &{}\text {for}\ z\in \Lambda (F) ,\\ 0 &{}\text {for}\ z\in \mathbb T\setminus \Lambda (F) , \end{array}\right. } \end{aligned}$$

we see that the function \(f\) is measurable and bounded. Since \(F(\mathbb D)\subset \mathbb D\), we can apply the dominated convergence theorem to show that \(F=\mathrm {P}[f]\). From the condition (2.28) it follows that \(f(z)\in D_k\) for a.e. \(z\in T_k\) and every \(k\in \{0,1,2\}\). Theorem 2.1 now implies the estimation (2.29).

From the properties of the Poisson integral it follows that the function

$$\begin{aligned} \mathbb D\ni z\mapsto F_0(z):=\mathrm {P}[{\chi }_{T_0\cup T_2}](z) \end{aligned}$$
(2.30)

is harmonic in \(\mathbb D\), \(F_0(\mathbb D)\subset \mathbb D\) and

$$\begin{aligned} \lim _{r\rightarrow 1^-}F_0(rz)=\mathrm {P}[{\chi }_{T_0\cup T_2}](z) ,\quad z\in \mathbb T\setminus \{e_1,e_2\}. \end{aligned}$$

Therefore the function \(F_0\) satisfies the condition (2.28) with \(F\) replaced by \(F_0\). Combining (2.30) with (2.25) and (2.27) we see that

$$\begin{aligned} F_0(r)=\frac{4}{3}-\frac{2}{\pi }\arctan \frac{\sqrt{3}}{1+2r} ,\quad r\in [0;1). \end{aligned}$$

This means that \(F_0\) is an extremal function in Corollary 2.2, and so the estimation (2.29) is sharp, which completes the proof. \(\square \)

Remark 2.3

Let \(\mathcal H\) be the class of all \(F\in \mathrm {Har}(\mathbb D)\) satisfying the assumption of Corollary 2.2. Applying (2.29) for \(z:=0\) we obtain the following useful estimation

$$\begin{aligned} |F(0)|\le \frac{2}{3} ,\quad F\in \mathcal H , \end{aligned}$$

which is best possible. In other words, the variability region of the origin for the class \(\mathcal H\) satisfies the inclusion

$$\begin{aligned} \{F(0):F\in \mathcal H\}\subset \mathrm {cl}(\mathbb D(0,2/3)) \end{aligned}$$
(2.31)

and \(2/3\) is the smallest radius of the inclusion.

Corollary 2.4

Let \(F\in \mathrm {Har}(\mathbb D)\) be an injective mapping in \(\mathbb D\) such that \(F(\mathbb D)=\mathbb D\) and

$$\begin{aligned} \lim _{r\rightarrow 1^-}F(re_k)=e_k ,\quad k\in \{0,1,2\}. \end{aligned}$$
(2.32)

Then the estimation (2.29) holds.

Proof

Given a mapping \(F\in \mathrm {Har}(\mathbb D)\) suppose that \(F\) is injective in \(\mathbb D\) and \(F(\mathbb D)=\mathbb D\). Then, as shown by Choquet in [2], there exists a continuous mapping \(f:\mathbb T\rightarrow \mathbb T\) such that \(F=\mathrm {P}[f]\), \(f(\mathbb T)=\mathbb T\) and for each \(w\in \mathbb T\), \(f^{-1}(\{w\})\) is a connected subset of \(\mathbb T\). Therefore, \(f^{-1}(\{w\})\) is a closed arc of \(\mathbb T\) for \(w\in \mathbb T\). This property can be also deduced from a more general result; cf. [6] or [4, Sect. 3.3]. Moreover, from the boundary normalization condition (2.32) it follows, that

$$\begin{aligned} f(e_k)=\lim _{r\rightarrow 1^-}\mathrm {P}[f](re_k)=\lim _{r\rightarrow 1^-}F(re_k)=e_k ,\quad k\in \{0,1,2\}. \end{aligned}$$
(2.33)

Suppose that \(f^{-1}(\{e_2\})\cap T_0\ne \emptyset \). Since \(f^{-1}(\{e_2\})\) is a closed arc of \(\mathbb T\), we see that \(e_0\in f^{-1}(\{e_2\})\) or \(e_1\in f^{-1}(\{e_2\})\). Hence \(f(e_0)=e_2\) or \(f(e_1)=e_2\), which contradicts the equalities (2.33). Thus \(e_2\notin f(T_0)\). Moreover, by the continuity of \(f\) and by (2.33) we see that \(f(T_0)\) is a closed arc of \(\mathbb T\) containing the points \(e_0\) and \(e_1\). Consequently,

$$\begin{aligned} T_0\subset f(T_0)\subset \mathbb T\setminus \{e_2\}. \end{aligned}$$
(2.34)

Suppose that \(f(T_0){\setminus }T_0\ne \emptyset \). Since

$$\begin{aligned} f(T_0{\setminus }f^{-1}(\{e_0,e_1\}))= f(T_0)\setminus \{e_0,e_1\} , \end{aligned}$$

we conclude from (2.34) that \(f(T_0{\setminus }f^{-1}(\{e_0,e_1\}))\) is not a connected subset of \(\mathbb T\). This is impossible, because \(T_0{\setminus }f^{-1}(\{e_0,e_1\})\) is an open arc of \(\mathbb T\), and so is the set \(f(T_0{\setminus }f^{-1}(\{e_0,e_1\}))\). Therefore, \(f(T_0)\subset T_0\). The same conclusion can be drawn for the arcs \(T_1\) and \(T_2\) in place of \(T_0\), which means that

$$\begin{aligned} f(T_k)\subset T_k ,\quad k\in \{0,1,2\}. \end{aligned}$$

It follows that for every \(k\in \{0,1,2\}\),

$$\begin{aligned} \lim _{r\rightarrow 1^-}F(rz)=f(z)\in D_k ,\quad z\in T_k , \end{aligned}$$

and consequently the condition (2.28) holds. Then Corollary 2.2 yields the estimation (2.29), which proves the corollary. \(\square \)

Remark 2.5

Using the trigonometric identity

$$\begin{aligned} \tan (\alpha -\beta )=\frac{\tan \alpha -\tan \beta }{1+\tan \alpha \tan \beta } ,\quad \alpha ,\beta ,\alpha -\beta \in \mathbb R\setminus \{n\pi +\pi /2:n\in \mathbb Z\} , \end{aligned}$$

we can transform the right hand side of the inequality in (2.29) as follows

$$\begin{aligned} \frac{4}{3}-\frac{2}{\pi }\arctan \biggl (\frac{\sqrt{3}}{1+2|z|}\biggr )=\frac{2}{\pi }\arctan \biggl (\sqrt{3}\frac{1+|z|}{1-|z|}\biggr ) ,\quad z\in \mathbb D. \end{aligned}$$
(2.35)

Let us recall that the hyperbolic metric \(\rho _h\) in \(\mathbb D\) is given by the formula

$$\begin{aligned} \rho _h(z,w):=\frac{1}{2}\log \frac{|1-z\overline{w}|+|z-w|}{|1-z\overline{w}|-|z-w|} ,\quad z,w\in \mathbb D ; \end{aligned}$$

cf. e.g. [1]. Hence

$$\begin{aligned} \mathrm {e}^{2\rho _h(z,0)}=\frac{1+|z|}{1-|z|} ,\quad z\in \mathbb D , \end{aligned}$$

which together with (2.35) leads to

$$\begin{aligned} \frac{4}{3}-\frac{2}{\pi }\arctan \biggl (\frac{\sqrt{3}}{1+2|z|}\biggr )=\frac{2}{\pi }\arctan \Bigl (\sqrt{3}\mathrm {e}^{2\rho _h(z,0)}\Bigr ) ,\quad z\in \mathbb D. \end{aligned}$$
(2.36)

Therefore the right hand side of the inequalities in (2.5) and (2.29) can be replaced by the right hand side of the equality in (2.35) or (2.36).

3 The Extremal Functions

As shown in the proof of Theorem 2.1 the function \(f_0\), given by the formula (2.25), yields the equality in (2.5). Consequently, the function \(F_0\), given by the formula (2.30), is extremal in Corollary 2.2. Since for every \(z=r\mathrm {e}^{\mathrm {i}\theta }\in \mathbb D\) the equalities (2.26) hold, we conclude from (2.18) that

$$\begin{aligned} F_0(z)=1-Q_r(\theta )=\frac{4}{3}-\frac{1}{\pi }\mathrm {Im}\bigl [\log (z-e_2)-\log (z-e_1)\bigr ] ,\quad z=r\mathrm {e}^{\mathrm {i}\theta }\in \mathbb D .\qquad \end{aligned}$$
(3.1)

We want to find all extremal functions in Theorem 2.1 and Corollary 2.2. To this end we need the following lemma.

Lemma 3.1

Given a closed arc \(T\subset \mathbb T\) of length less than \(\pi \), \(a\in \mathbb D\), \(b\in T\cup \{0\}\) and an integrable function \(f:\mathbb T\rightarrow \mathrm {cl}(\mathbb D)\) suppose that

$$\begin{aligned} f(z)\in D:=\{r\zeta :\zeta \in T\,,\,r\in [0;1]\}\quad \text {for a.e.}\ z\in T \end{aligned}$$
(3.2)

as well as

$$\begin{aligned} \mathrm {P}[f\cdot {\chi }_T](a)=b\mathrm {P}[{\chi }_T](a). \end{aligned}$$
(3.3)

Then \(f(z)=b\) for a.e. \(z\in T\).

Proof

Let \(T\), \(a\), \(b\) and \(f\) satisfy the assumptions. Then \(T=\{\mathrm {e}^{\mathrm {i} t}:t\in [\alpha _0-\alpha ;\alpha _0+\alpha ]\}\) for some \(\alpha _0\in \mathbb R\) and \(\alpha \in [0;\pi /2)\), and \(D\) is a convex and closed subset of \(\mathrm {cl}(\mathbb D)\). From (3.2) it follows that

$$\begin{aligned} \lambda _b\circ f(z)\in \lambda _b(D)\subset \{0\}\cup \{\zeta \in \mathbb C:\mathrm {Re}\zeta >0\}\quad \text {for a.e.}\ z\in T , \end{aligned}$$
(3.4)

where \(\mathbb C\ni \zeta \mapsto \lambda _0(\zeta ):=\mathrm {e}^{-\mathrm {i}\alpha _0}\zeta \) and \(\mathbb C\ni \zeta \mapsto \lambda _p(\zeta ):=1-\zeta /p\) for \(p\in \mathbb T\).

From (3.4) it follows that \(\mathrm {Re}\lambda _b(f(z))\ge 0\) for a.e. \(z\in T\). By the equality (3.3) we have

$$\begin{aligned} \frac{\mathrm {P}[\mathrm {Re}((\lambda _b\circ f)\cdot {\chi }_T)](a)}{\mathrm {P}[{\chi }_T](a)} =\mathrm {Re}\left( \lambda _b\left( \frac{\mathrm {P}[f\cdot {\chi }_T](a)}{\mathrm {P}[{\chi }_T](a)}\right) \right) =\mathrm {Re}\lambda _b(b)=0. \end{aligned}$$

Hence the real-valued harmonic function \(\mathrm {P}[\mathrm {Re}((\lambda _b\circ f)\cdot {\chi }_T)]\) attains minimum at \(a\), and so, by the minimum principle for real-valued harmonic functions,

$$\begin{aligned} \mathrm {P}[\mathrm {Re}((\lambda _b\circ f)\cdot {\chi }_T)](z)=0 ,\quad z\in \mathbb D. \end{aligned}$$

Then for a.e. \(z\in \mathbb T\),

$$\begin{aligned} \mathrm {Re}\lambda _b(f(z))=\mathrm {Re}((\lambda _b\circ f)\cdot {\chi }_T)(z)=\lim _{r\rightarrow 1^-}\mathrm {P}[\mathrm {Re}((\lambda _b\circ f)\cdot {\chi }_T)](rz)=0 ; \end{aligned}$$

cf. [3, Cor. 2, Sect. 1.2]. This together with (3.4) leads to \(\lambda _0(f(z))=0\) for a.e. \(z\in T\). Hence \(f(z)=b\) for a.e. \(z\in T\), which is the desired conclusion. \(\square \)

Remark 3.2

Setting

$$\begin{aligned} \mathbb C\ni z\mapsto S_k(z):=e_k z ,\quad k\in \{0,1,2\} , \end{aligned}$$
(3.5)

we see that the set \(\{S_0,S_1,S_2\}\) is closed with respect to the composition operation of mappings \(\circ \), i.e., \((\{S_0,S_1,S_2\},\circ )\) is a group. Let \(\mathcal F\) be the class of all integrable functions \(f:\mathbb T\rightarrow \mathbb C\) satisfying the condition (2.4). It is easily seen that

$$\begin{aligned} S_k\circ f\circ S_k^{-1}\in \mathcal F ,\quad f\in \mathcal F\,,\,k\in \{0,1,2\}. \end{aligned}$$
(3.6)

By the definition of the class \(\mathcal H\) (see Remark 2.3) we also have

$$\begin{aligned} S_k\circ F\circ S_k^{-1}\in \mathcal H ,\quad F\in \mathcal H\,,\,k\in \{0,1,2\}. \end{aligned}$$
(3.7)

From the properties of the Poisson integral it may be also concluded that

$$\begin{aligned} \mathrm {P}[S_k\circ f\circ S_k^{-1}]=S_k\circ \mathrm {P}[f]\circ S_k^{-1} ,\quad f\in \mathcal F\,,\,k\in \{0,1,2\}. \end{aligned}$$
(3.8)

Theorem 3.3

Let \(f:\mathbb T\rightarrow \mathbb C\) be an integrable function which satisfies the condition (2.4). Then

$$\begin{aligned} |\mathrm {P}[f](z)|=\frac{4}{3}-\frac{2}{\pi }\arctan \biggl (\frac{\sqrt{3}}{1+2|z|}\biggr ), \quad z\in \mathbb D, \end{aligned}$$
(3.9)

if and only if there exists \(k\in \{0,1,2\}\) such that one of the two following conditions holds:

  1. (i)

    \(z\ne 0\) and

    $$\begin{aligned} z=S_k(|z|) \quad \text {and}\quad f(u)=S_k\circ f_0\circ S_k^{-1}(u)\quad \text {for a.e.}\ u\in \mathbb T , \end{aligned}$$
    (3.10)

    where \(f_0\) is the function given by the formula (2.25);

  2. (ii)

    \(z=0\) and

    $$\begin{aligned} f(u)=S_k\circ f_0\circ S_k^{-1}(u) \quad \text {or}\quad f(u)=S_k\circ f_0^*\circ S_k^{-1}(u) \quad \text {for a.e.}\ u\in \mathbb T , \end{aligned}$$
    (3.11)

    where

    $$\begin{aligned} f_0^*:=\mathrm {e}^{\pi \mathrm {i}/3}\cdot {\chi }_{T_0}+e_1\cdot {\chi }_{T_1}+e_0\cdot {\chi }_{T_2}. \end{aligned}$$
    (3.12)

Proof

Fix \(z\in \mathbb D\) and \(f\in \mathcal F\). As shown in the final part of the proof of Theorem 2.1 the function \(f_0\) satisfies (2.27). By the formula (3.12) we have

$$\begin{aligned} |\mathrm {P}[f_0^*](0)|&=\bigl |\mathrm {e}^{\pi \mathrm {i}/3}\mathrm {P}[{\chi }_{T_0}](0)+e_1\mathrm {P}[{\chi }_{T_1}](0)+e_0\mathrm {P}[{\chi }_{T_1}](0)\bigr | \\&=\frac{1}{3}\bigl |\mathrm {e}^{\pi \mathrm {i}/3}+e_1+e_0\bigr |=\frac{1}{3}\bigl |1+\mathrm {e}^{\pi \mathrm {i}/3}+\mathrm {e}^{-\pi \mathrm {i}/3}\bigr | =\frac{2}{3}=|\mathrm {P}[f_0](0)|. \end{aligned}$$

Applying now the property (3.8) we deduce the equality (3.9) from the condition (i), provided \(z\ne 0\), and from the condition (ii), provided \(z=0\).

Conversely, assume that the equality (3.9) holds. Analyzing respective parts in the proof of Theorem 2.1 we conclude from (2.12), (2.24) and the second equality in (2.27) that

$$\begin{aligned} \sum _{k=0}^2(p_k-Q_r(0))c_k+\sum _{k=0}^2 Q_r(0)c_k=\sum _{k=0}^2(p_k-Q_r(0))+2Q_r(0) , \end{aligned}$$

and consequently

$$\begin{aligned} \sum _{k=0}^2(p_k-Q_r(0))(1-c_k)+Q_r(0)\left( 2-\sum _{k=0}^2 c_k\right) =0. \end{aligned}$$

Combining this with (2.14), (2.15) and (2.22) we see that

$$\begin{aligned} c_0+c_1+c_2=2 \end{aligned}$$
(3.13)

and

$$\begin{aligned} (p_k-Q_r(0))(1-c_k)=0 ,\quad k\in \{0,1,2\}. \end{aligned}$$
(3.14)

Since \(c_k\le 1\) for \(k\in \{0,1,2\}\), the equality (3.13) is impossible provided \(c:=\min (\{c_0,c_1,c_2\})<0\). Therefore \(0\le c\le 1\). Suppose that \(c=0\). Then \(c_0=0\) or \(c_1=0\) or \(c_2=0\).

If \(c_0=0\), then by (3.13), \(c_1=c_2=1\), which leads, by (2.13), to

$$\begin{aligned} r_0=0 ,\ r_1=1 ,\ \alpha _1=\frac{4\pi }{3} ,\ r_2=1 ,\ \alpha _2=\frac{4\pi }{3}. \end{aligned}$$
(3.15)

If \(c_1=0\), then by (3.13), \(c_0=c_2=1\), which leads, by (2.13), to

$$\begin{aligned} r_1=0 ,\ r_0=1 ,\ \alpha _0=0 ,\ r_2=1 ,\ \alpha _2=2\pi . \end{aligned}$$
(3.16)

If \(c_2=0\), then by (3.13), \(c_0=c_1=1\), which leads, by (2.13), to

$$\begin{aligned} r_2=0 ,\ r_0=1 ,\ \alpha _0=\frac{2\pi }{3} ,\ r_1=1 ,\ \alpha _1=\frac{2\pi }{3}. \end{aligned}$$
(3.17)

In all the cases (3.15), (3.16) and (3.17), \(r_k\mathrm {e}^{\mathrm {i}\alpha _k}\in T_k\cup \{0\}\) for \(k\in \{0,1,2\}\). Then (2.11) implies, by Lemma 3.1, that

$$\begin{aligned} f=\sum _{k=0}^2 r_k\mathrm {e}^{\mathrm {i}\alpha _k}\cdot {\chi }_{T_k}\quad \text {a.e. on}\ \mathbb T. \end{aligned}$$
(3.18)

In particular, (3.18) together with (3.15), (2.25) and (3.5) yields

$$\begin{aligned} f=0\cdot {\chi }_{T_0}+e_2\cdot {\chi }_{T_1}+e_2\cdot {\chi }_{T_2}=e_2\cdot {\chi }_{T_1\cup T_2}=S_2\circ f_0\circ S_2^{-1}\quad \text {a.e. on}\ \mathbb T. \end{aligned}$$

From (3.18), (3.16), (2.25) and (3.5) we see that

$$\begin{aligned} f=0\cdot {\chi }_{T_1}+e_0\cdot {\chi }_{T_0}+e_0\cdot {\chi }_{T_2}=e_0\cdot {\chi }_{T_0\cup T_2}=S_0\circ f_0\circ S_0^{-1}\quad \text {a.e. on}\ \mathbb T. \end{aligned}$$

Finally, (3.18), (3.17), (2.25) and (3.5) lead to

$$\begin{aligned} f=0\cdot {\chi }_{T_2}+e_1\cdot {\chi }_{T_0}+e_1\cdot {\chi }_{T_1}=e_1\cdot {\chi }_{T_0\cup T_1}=S_1\circ f_0\circ S_1^{-1}\quad \text {a.e. on}\ \mathbb T. \end{aligned}$$

Therefore all these equalities yield the second part of the conjunction in (3.10), provided \(z\ne 0\), and the first part of the alternative in (3.11), provided \(z=0\). Assuming now that \(r=|z|>0\), we conclude from (2.19) that

$$\begin{aligned} Q_r(\theta )>Q_r(0) ,\quad \theta \in \mathbb R\setminus \{2n\pi :n\in \mathbb Z\}. \end{aligned}$$
(3.19)

For each \(k\in \{0,1,2\}\) we conclude from (3.14) that if \(c_k=0\), then \(p_k=Q_r(0)\). Therefore, from (3.19), (2.21) and (3.5) it follows that:

If \(c_0=0\), then \(\theta _r=4\pi /3\), and so \(z=S_2(|z|)\).

If \(c_1=0\), then \(\theta _r=0\), and so \(z=S_0(|z|)\).

If \(c_2=0\), then \(\theta _r=2\pi /3\), and so \(z=S_1(|z|)\).

These equalities yield the first part of the conjunction in (3.10), provided \(z\ne 0\).

It remains to examine the case where \(0<c\le 1\). Then all \(c_0\), \(c_1\), \(c_2\) are positive. Analyzing the part of the proof of Theorem 2.1 from (2.15) until (2.17) we get the following reasoning: From (3.13) we deduce that for a given \(\alpha \in I_0\),

$$\begin{aligned} 2=c_0+c_1+c_2\le 1+2\cos \frac{\pi }{3}\cos \Bigl (\frac{\pi }{3}-\alpha \Bigr ) , \end{aligned}$$

whence \(\alpha =\pi /3\). Then \(c_0\le 1\), \(c_1\le 1/2\) and \(c_2\le 1/2\). Applying (3.13) once more we get \(c_0=1\), \(c_1=1/2\) and \(c_2=1/2\). Since

$$\begin{aligned} c_k=r_k\cos \Bigl (\alpha _k-\frac{\pi }{3}\Bigr ) ,\quad 0\le r_k\le 1 \quad \text {and}\quad \alpha _k\in I_k ,\quad k\in \{0,1,2\} , \end{aligned}$$

we see that

$$\begin{aligned} r_0=1 ,\ \alpha _0=\frac{\pi }{3} ,\ r_1=1 ,\ \alpha _1=\frac{2\pi }{3} ,\ r_2=1 ,\ \alpha _2=2\pi . \end{aligned}$$
(3.20)

In the similar manner we show that:

If \(\alpha \in I_1\), then \(\alpha =\pi \), \(c_0=1/2\), \(c_1=1\), \(c_2=1/2\), and consequently

$$\begin{aligned} r_0=1 ,\ \alpha _0=\frac{2\pi }{3} ,\ r_1=1 ,\ \alpha _1=\pi ,\ r_2=1 ,\ \alpha _2=\frac{4\pi }{3}. \end{aligned}$$
(3.21)

If \(\alpha \in I_2\), then \(\alpha =5\pi /3\), \(c_0=1/2\), \(c_1=1/2\), \(c_2=1\), and consequently

$$\begin{aligned} r_0=1 ,\ \alpha _0=0 ,\ r_1=1 ,\ \alpha _1=\frac{4\pi }{3} ,\ r_2=1 ,\ \alpha _2=\frac{5\pi }{3}. \end{aligned}$$
(3.22)

In all the cases (3.20), (3.21) and (3.22), \(r_k\mathrm {e}^{\mathrm {i}\alpha _k}\in T_k\) for \(k\in \{0,1,2\}\). Then (2.11) implies, by Lemma 3.1, the equality (3.18). In particular, (3.18) together with (3.20), (3.12) and (3.5) yields

$$\begin{aligned} f=\mathrm {e}^{\pi \mathrm {i}/3}\cdot {\chi }_{T_0}+e_1\cdot {\chi }_{T_1}+e_0\cdot {\chi }_{T_2}=f_0^*=S_0\circ f_0^*\circ S_0^{-1} \quad \text {a.e. on}\ \mathbb T. \end{aligned}$$

From (3.18), (3.21), (3.12) and (3.5) we see that

$$\begin{aligned} f=e_1\cdot {\chi }_{T_0}+\mathrm {e}^{\pi \mathrm {i}}\cdot {\chi }_{T_1}+e_2\cdot {\chi }_{T_2}=S_1\circ f_0^*\circ S_1^{-1} \quad \text {a.e. on}\ \mathbb T. \end{aligned}$$

Finally, (3.18), (3.22), (3.12) and (3.5) lead to

$$\begin{aligned} f=e_0\cdot {\chi }_{T_0}+e_2\cdot {\chi }_{T_1}+\mathrm {e}^{5\pi \mathrm {i}/3}\cdot {\chi }_{T_2}=S_2\circ f_0^*\circ S_2^{-1} \quad \text {a.e. on}\ \mathbb T. \end{aligned}$$

Therefore all these equalities yield the second part of the alternative in (3.11). Moreover, as shown above, \(c_i=c_j=1/2\) for some \(i,j\in \{0,1,2\}\) such that \(i\ne j\). Then by the condition (3.14) it follows that \(p_i=p_j=Q_r(0)\). However, from (2.21) and (3.19) we see that this is impossible provided \(|z|=r>0\). Therefore, \(z=0\), which completes the proof. \(\square \)

Corollary 3.4

For any function \(F\in \mathrm {Har}(\mathbb D)\) and \(z\in \mathbb D\), if \(F(\mathbb D)\subset \mathbb D\) and the condition (2.28) holds for every \(k\in \{0,1,2\}\), then

$$\begin{aligned} |F(z)|=\frac{4}{3}-\frac{2}{\pi }\arctan \biggl (\frac{\sqrt{3}}{1+2|z|}\biggr ) \end{aligned}$$
(3.23)

iff there exists \(k\in \{0,1,2\}\) such that one of the two following conditions holds:

  1. (i)

    \(z\ne 0\) and

    $$\begin{aligned} z=S_k(|z|) \quad \text {and}\quad F(u)=S_k\circ F_0\circ S_k^{-1}(u) ,\quad u\in \mathbb D , \end{aligned}$$
    (3.24)

    where \(F_0:=\mathrm {P}[f_0]\) with \(f_0\) given by the formula (2.25);

  2. (ii)

    \(z=0\) and

    $$\begin{aligned} F(u)=S_k\circ F_0\circ S_k^{-1}(u) \quad \text {or}\quad F(u)=S_k\circ F_0^*\circ S_k^{-1}(u) ,\quad u\in \mathbb D , \end{aligned}$$
    (3.25)

    where \(F_0^*:=\mathrm {P}[f_0^*]\) with \(f_0^*\) given by the formula (3.12).

Proof

From the definitions of the classes \(\mathcal H\) and \(\mathcal F\) it follows that \(\mathcal H=\mathrm {P}[\mathcal F]\); cf. [3, Cor. 1 and Cor. 2, Sect. 1.2]. Thus the corollary follows directly from Theorem 3.3, the property (3.8) as well as the equalities \(F_0=\mathrm {P}[f_0]\) and \(F_0^*=\mathrm {P}[f_0^*]\). \(\square \)

Remark 3.5

The formula (3.1) gives an explicite form of the function \(F_0\). From (2.30) we have

$$\begin{aligned} \mathrm {P}[{\chi }_{T_1}]=\mathrm {P}[1-{\chi }_{T_0\cup T_2}]=1-\mathrm {P}[{\chi }_{T_0\cup T_2}]=1-F_0\ . \end{aligned}$$

Hence and by (3.5) we see that

$$\begin{aligned} \mathrm {P}[{\chi }_{T_0}]&=\mathrm {P}[{\chi }_{T_1}\circ S_2^{-1}]=\mathrm {P}[{\chi }_{T_1}]\circ S_2^{-1}=1-F_0\circ S_1 , \\ \mathrm {P}[{\chi }_{T_2}]&=\mathrm {P}[{\chi }_{T_1}\circ S_1^{-1}]=\mathrm {P}[{\chi }_{T_1}]\circ S_1^{-1}=1-F_0\circ S_2. \end{aligned}$$

Using now the formula (3.12) we deduce that

$$\begin{aligned} F_0^*&=\mathrm {P}[f_0^*]=\mathrm {e}^{\pi \mathrm {i}/3}\cdot \mathrm {P}[{\chi }_{T_0}]+e_1\cdot \mathrm {P}[{\chi }_{T_1}]+e_0\cdot \mathrm {P}[{\chi }_{T_2}] \\&=\mathrm {e}^{\pi \mathrm {i}/3}\bigl ((1-F_0\circ S_1)+\mathrm {e}^{\pi \mathrm {i}/3}(1-F_0)+\mathrm {e}^{-\pi \mathrm {i}/3}(1-F_0\circ S_2)\bigr ) \\&=\mathrm {e}^{\pi \mathrm {i}/3}\bigl (2-F_0\circ S_1-\mathrm {e}^{\pi \mathrm {i}/3}F_0-\mathrm {e}^{-\pi \mathrm {i}/3}F_0\circ S_2)\bigr ). \end{aligned}$$

Thus we obtain the following explicite form of the function \(F_0^*\),

$$\begin{aligned} F_0^*(z)=\mathrm {e}^{\pi \mathrm {i}/3}\Bigl (2-F_0(\mathrm {e}^{2\pi \mathrm {i}/3}z)-\mathrm {e}^{\pi \mathrm {i}/3}F_0(z)-\mathrm {e}^{-\pi \mathrm {i}/3}F_0(\mathrm {e}^{4\pi \mathrm {i}/3}z)\Bigr ),\quad z\in \mathbb D, \end{aligned}$$

which leads to the more symmetric one

$$\begin{aligned} \mathrm {e}^{-\pi \mathrm {i}/3}F_0^*(\mathrm {e}^{\pi \mathrm {i}/3}z)=2-F_0(-z)-\mathrm {e}^{\pi \mathrm {i}/3}F_0(\mathrm {e}^{\pi \mathrm {i}/3}z)-\mathrm {e}^{-\pi \mathrm {i}/3}F_0(\mathrm {e}^{-\pi \mathrm {i}/3}z),\quad z\in \mathbb D. \end{aligned}$$