Skip to main content
Log in

Classification, non-degeneracy and existence of solutions to nonlinear Choquard equations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we first study the classification problem of positive solutions to the nonlocal Choquard equation

$$\begin{aligned} (-\Delta )^{\alpha }u=\left( \textrm{I}_{\beta }*\left| u\right| ^{p}\right) \left| u\right| ^{p-2}u, \qquad u\in {\mathcal {D}}^{\alpha ,2}\left( {\mathbb {R}}^N\right) \cap L^{\frac{2Np}{N+\beta }}\left( {\mathbb {R}}^N\right) , \end{aligned}$$

where \(\alpha \in \left( 0,\frac{N}{2}\right) \) with \(N\ge 1\), \(\textrm{I}_{\beta }(x)\) is the standard Riesz potential with \(\beta \in \left( 0,N\right) \) if \(N\le 4\alpha \), or \(\beta \in \left[ N-4\alpha ,N\right) \) if \(N>4\alpha \), and \(p\in [2, 2^*_{\alpha ,\beta }]\) with \(2^*_{\alpha ,\beta }:=\frac{N+\beta }{N-2\alpha }\) which denotes the corresponding Hardy–Littlewood–Sobolev critical exponent. By applying the method of moving planes, we prove that the above Choquard equation has no positive solution in the subcritical case \(p\in [2, 2^*_{\alpha ,\beta })\), and any positive solution must be of the form

$$\begin{aligned} U_{\lambda , x_0}(x)=C_{\alpha ,\beta ,N}\left( \frac{\lambda }{\lambda ^2 +\left| x-x^0\right| ^2}\right) ^{\frac{N-2\alpha }{2}} \end{aligned}$$

in the critical case \(p=2^*_{\alpha ,\beta }\), where \(x^0\in {\mathbb {R}}^N\), \(\lambda >0\) and the constant \(C_{\alpha ,\beta ,N}>0\) only depends on \(\alpha \), \(\beta \) and N. Moreover, we prove that this solution \(U_{\lambda , x^0}(x)\) is non-degenerate. Based on the non-degeneracy result, we study the existence of solutions to the following Choquard equation with potential:

$$\begin{aligned} -\Delta u+V(\left| x\right| )u=\left( \textrm{I}_{\beta }*u^{2_{1, \beta }^*}\right) u^{2_{1,\beta }^*-1},\qquad u\in {\mathcal {D}}^{1,2}({\mathbb {R}}^N), \end{aligned}$$

where \(\beta \in [N-4,N-2)\), \(N\ge 5\), and \(V(\cdot )\) is a bounded non-negative function. We show that this Choquard equation possesses infinitely many non-radial solutions provided that \(r^{2}V(r)\) has an isolated local maximum point, or isolated local minimum point \(r_0>0\) satisfying \(V(r_0)>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Atkinson, K., Han, W.: Spherical harmonics and approximations on the unit sphere: an introduction. Springer, Berlin, Heidelberg (2012)

    Book  Google Scholar 

  2. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \({\mathbb{R} }^2\). J. Diff. Equ. 261, 1933–1972 (2016)

    Article  Google Scholar 

  3. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Singularly perturbed critical Choquard equations. J. Diff. Equ. 263, 3943–3988 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chen, G.: Nondegeneracy of ground states and multiple semiclassical solutions of the Hartree equation for general dimensions. Results Math. 76(1), 34, 31 (2021)

    Article  MathSciNet  Google Scholar 

  5. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59(3), 330–343 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chen, W., Li, Y., Ma, P.: The fractional Laplacian. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2020)

    Book  Google Scholar 

  7. Chen, W., Wei, J., Yan, S.: Infinitely many solutions for the Schrödinger equations in \({\mathbb{R} }^N\) with critical growth. J. Diff. Equ. 252(3), 2425–2447 (2012)

    Article  Google Scholar 

  8. Dai, W., Huang, J., Qin, Y., Wang, B., Fang, Y.: Regularity and classification of solutions to static Hartree equations involving fractional Laplacians. Discrete Contin. Dyn. Syst. 39(3), 1389–1403 (2019)

    Article  MathSciNet  Google Scholar 

  9. Dai, F., Xu, Y.: Approximation theory and harmonic analysis on spheres and balls. Springer, New York (2013)

    Book  Google Scholar 

  10. Du, L., Yang, M.: Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin. Dyn. Syst. 39(10), 5847–5866 (2019)

    Article  MathSciNet  Google Scholar 

  11. Gao, F., Moroz, V., Yang, M., Zhao, S.: Construction of infinitely many solutions for a critical Choquard equation via local Pohožaev identities. Calc. Var. Partial Diff. Equ. 61(6), 222 (2022). (47 pp)

    Article  Google Scholar 

  12. Guo, L., Hu, T., Peng, S., Shuai, W.: Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent. Calc. Var. Partial Diff. Equ. 58(4), 128, 34 (2019)

    Article  MathSciNet  Google Scholar 

  13. Le, P.: Liouville theorem and classification of positive solutions for a fractional Choquard type equation. Nonlinear Anal. 185, 123–141 (2019)

    Article  MathSciNet  Google Scholar 

  14. Lei, Y.: Liouville theorems and classification results for a nonlocal Schrödinger equation. Discrete Contin. Dyn. Syst. 38(11), 5351–5377 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, Y.: Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. 6(2), 153–180 (2004)

    Article  MathSciNet  Google Scholar 

  16. Li, X., Liu, C., Tang, X., Xu, G.: Nondegeneracy of positive bubble solutions for generalized energy-critical Hartree equations. arXiv:2304.04139

  17. Li, Y., Zhang, L.: Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations. J. Anal. Math. 90, 27–87 (2003)

    Article  MathSciNet  Google Scholar 

  18. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976)

    Article  MathSciNet  Google Scholar 

  19. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathmatics. AM, Providence (2001)

  20. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4(6), 1063–1072 (1980)

    Article  MathSciNet  Google Scholar 

  21. Lions, P.-L.: The concentration-compactness principle in the calculus of variations, the locally compact case I. Ann. Inst. H. Poincaré Anal. NonLinéaire 1(4), 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  22. Luo, P., Peng, S., Wang, C.: Uniqueness of positive solutions with concentration for the Schrödinger-Newton problem. Calc. Var. Partial Diff. Equ. 59(2), 60, 41 (2020)

    Article  Google Scholar 

  23. Moroz, V., Van Schaftingen, J.: Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265(2), 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  24. Pekar, S.I.: Untersuchungen über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Book  Google Scholar 

  25. Rey, O.: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. 89(1), 1–52 (1990)

    Article  MathSciNet  Google Scholar 

  26. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger-Newton equations. J. Math. Phys. 50(1), 012905, 22 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Z. Huang was supported by Guangzhou Science and technology planning project (No.202201011566), Guangdong Basic and Applied Basic Research Fund-Regional Joint Fund-Youth Fund Project (No.2022A1515110997), and Guangdong Provincial Junior Innovative Talents Project for Ordinary Universities (No.2022KQNCX053). C. Liu was supported by Guangdong Basic and Applied Basic Research Foundations (No. 2022A1515111145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Proofs of Proposition 2.1 and Lemma 3.1

Proof of Proposition 2.1

Since \(u\in {\mathcal {D}}^{\alpha ,2}({\mathbb {R}}^N)\cap L^{\frac{2Np}{N+\beta }}({\mathbb {R}}^N)\), using Sobolev embedding theorem, we have that \(u\in L^q({\mathbb {R}}^N)\) for any q satisfies \(\frac{2Np}{N+\beta }\le q\le \frac{2N}{N-2\alpha }\). Thus, by the definition of \({\bar{u}}\) in Proposition 2.1, there holds that

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {R}}^N}\left| u(x)\right| ^{q}\textrm{d}x&=\int _{{\mathbb {R}}^N}\frac{1}{\left| y-x^0\right| ^{2N}} \left| u\left( \frac{y-x^0}{\left| y-x^0\right| ^2}+x^0\right) \right| ^{q}\textrm{d}y\\&=\int _{{\mathbb {R}}^N}\left[ \frac{\left| {\bar{u}}(y)\right| ^p}{\left| y-x^0\right| ^{p\{\frac{2N}{r} -N+2\alpha \}}}\right] ^{\frac{q}{p}}\textrm{d}y. \end{aligned} \end{aligned}$$

Thus, we can obtain (2.3) and (2.4) by taking \(q=\frac{2Np}{N+\beta }\) and \(q=\frac{2N}{N-2\alpha }\), respectively.

Using [6, Lemma A.2.1.], we have that

$$\begin{aligned} (-\Delta )^\alpha {\bar{u}}(x)&=\frac{1}{\left| x-x^0\right| ^{N+2\alpha }} \left( (-\Delta )^\alpha u\right) \left( \frac{x-x^0}{\left| x-x^0\right| ^2}+x^0\right) \\&=\frac{{\bar{u}}^{p-1}\left( x\right) }{\left| x-x^0\right| ^{N+2\alpha -(p-1)(N-2\alpha )}}\left( \textrm{I}_\beta *u^p\right) \left( \frac{x-x^0}{\left| x-x^0\right| ^2}+x^0\right) \\&=\frac{A_\beta {\bar{u}}^{p-1}\left( x\right) }{\left| x-x^0\right| ^{N+2\alpha -(p-1)(N-2\alpha )}}\int _{{\mathbb {R}}^N}\frac{u^p(y)}{\left| y-x^0-\frac{x-x^0}{\left| x-x^0\right| ^2}\right| ^{N-\beta }}\textrm{d}y\\&\quad \left( \text {using the identity that}\ \left| y\right| \left| x-\frac{y}{\left| y\right| ^2}\right| =\left| x\right| \left| \frac{x}{\left| x\right| ^2}-y\right| \right) \\&=\frac{A_\beta {\bar{u}}^{p-1}\left( x\right) }{\left| x-x^0\right| ^{N+2\alpha -(p-1)(N-2s)}}\\&\int _{{\mathbb {R}}^N}\frac{\left| x-x^0\right| ^{N-\beta }u^p(y-x^0+x^0)}{\left| y-x^0\right| ^{N-\beta } \left| \frac{y-x^0}{\left| y-x^0\right| ^2}-x+x^0\right| ^{N-\beta }} \textrm{d}y\\&\quad \left( \text {using the transform}\ z-x^0=\frac{y-x^0}{\left| y-x^0\right| ^2}\right) \\&=\frac{A_\beta {\bar{u}}^{p-1}\left( x\right) }{\left| x-x^0\right| ^{N+2\alpha -(p-1)(N-2\alpha )}}\\&\quad \quad \int _{{\mathbb {R}}^N}\frac{\left| z-x^0\right| ^{N-\beta }\left| x-x^0\right| ^{N-\beta }u^p(\frac{z-x^0}{\left| z-x^0\right| ^2}+x^0)}{\left| z-x\right| ^{N-\beta }\left| z-x^0\right| ^{2N}}\textrm{d}z\\&=\frac{A_\beta {\bar{u}}^{p-1}\left( x\right) }{\left| x-x^0\right| ^{N+2\alpha -(p-1)(N-2\alpha )}}\int _{{\mathbb {R}}^N}\frac{\left| x-x^0\right| ^{N-\beta }u^p(\frac{z-x^0}{\left| z-x^0\right| ^2}+x^0)}{\left| z-x^0\right| ^{N+\beta }\left| z-x\right| ^{N-\beta }}\textrm{d}z\\&=\frac{A_\beta {\bar{u}}^{p-1}\left( x\right) }{\left| x-x^0\right| ^{N+\beta -p(N-2\alpha )}}\int _{{\mathbb {R}}^N}\frac{{\bar{u}}^p(z)}{\left| z-x^0\right| ^{N+\beta -p(N-2\alpha )}\left| z-x\right| ^{N-\beta }}\textrm{d}z. \end{aligned}$$

Combining above argument, we can obtain the desired results in Proposition 2.1. \(\square \)

Lemma 5.1

[16, Lemma A.1.] Let \(\gamma \in (0,N)\) and \(\sigma _1>0\). Then, there exists a uniform constant \(C>0\), such that

$$\begin{aligned} \int _{{\mathbb {R}}^N}\frac{1}{\left| z-y\right| ^{N-\gamma }(1+\left| z\right| )^{\gamma +\sigma _1}}\textrm{d}z\le \left\{ \begin{array}{lllll} \frac{C}{(1+\left| y\right| )^{\sigma _1}}, &{}\quad \text {if}\ \gamma +\sigma _1<N, \\ \frac{C\left[ 1+\ln (1+\left| y\right| )\right] }{(1+\left| y\right| )^{\sigma _1}}, &{}\quad \text {if}\ \gamma +\sigma _1=N, \\ \frac{C}{(1+\left| y\right| )^{N-\gamma }}, &{}\quad \text {if}\ \gamma +\sigma _1>N. \end{array} \right. \nonumber \\ \end{aligned}$$
(5.1)

Proof of Lemma 3.1

Let \(\phi \in L^\infty ({\mathbb {R}}^N)\) be a solution of Eq. (3.4). By Lemma 5.1 and definition of \(Q(\phi )\) in (3.5), we have that

$$\begin{aligned} \left| {\mathcal {Q}}(\phi )\right|&\le \frac{C}{(1+\left| x\right| )^{\beta +4\alpha -N}}\int _{{\mathbb {R}}^N}\frac{1}{\left| x-y\right| ^{N-\beta } \left[ 1+\left| y\right| \right] ^{N+\beta }}\textrm{d}y\\&\quad + \frac{C}{(1+\left| x\right| )^{\beta +2\alpha }}\int _{{\mathbb {R}}^N} \frac{1}{\left| x-y\right| ^{N-\beta }\left[ 1+\left| y\right| \right] ^{2\alpha +\beta }}\textrm{d}y\\&\le \frac{C}{(1+\left| x\right| )^{4\alpha }}. \end{aligned}$$

Thus, by Eq. (3.4), we have that

$$\begin{aligned} \left| \phi (x)\right|= & {} C(N,\alpha )\left| \int _{{\mathbb {R}}^N}\frac{{\mathcal {Q}} (\phi )(y)}{\left| x-y\right| ^{N-2\alpha }}\textrm{d}y\right| \le \left\{ \begin{array}{lllll} \frac{C}{(1+\left| y\right| )^{2\alpha }}, &{}\quad \text {if}\ \alpha <\frac{N}{4}, \\ \frac{C\left[ 1+\ln (1+\left| y\right| )\right] }{(1+\left| y\right| )^{2\alpha }}, &{}\quad \text {if}\ \alpha =\frac{N}{4}, \\ \frac{C}{(1+\left| y\right| )^{N-2\alpha }}, &{}\quad \text {if}\ \alpha \in (\frac{N}{4},\frac{N}{2}). \end{array} \right. \nonumber \\ \end{aligned}$$
(5.2)

Therefore, we need to consider the case \(\alpha \in (0,\frac{N}{4}]\). We will perform an iterative process. By the above estimate (5.2), we have that if \(4\alpha \in (0,N)\)

$$\begin{aligned} \left| {\mathcal {Q}}(\phi )\right|&\le \frac{C}{(1+\left| x\right| )^{\beta +6\alpha -N}}\int _{{\mathbb {R}}^N} \frac{1}{\left| x-y\right| ^{N-\beta }\left[ 1+\left| y\right| \right] ^{N+\beta }}\textrm{d}y\\&\quad +\frac{C}{(1+\left| x\right| )^{\beta +2\alpha }}\int _{{\mathbb {R}}^N} \frac{1}{\left| x-y\right| ^{N-\beta }\left[ 1+\left| y\right| \right] ^{4\alpha +\beta }}\textrm{d}y\\&\le \frac{C}{(1+\left| x\right| )^{6\alpha }}, \end{aligned}$$

and if \(4\alpha =N\)

$$\begin{aligned} \left| {\mathcal {Q}}(\phi )\right|&\le \frac{C\left[ 1+\ln (1+\left| y\right| ) \right] }{(1+\left| x\right| )^{\beta +6\alpha -N}}\int _{{\mathbb {R}}^N} \frac{1}{\left| x-y\right| ^{N-\beta }\left[ 1+\left| y\right| \right] ^{N+\beta }}\textrm{d}y\\&\quad +\frac{C}{(1+\left| x\right| )^{\beta +2\alpha }}\int _{{\mathbb {R}}^N} \frac{\left[ 1+\ln (1+\left| y\right| )\right] }{\left| x-y\right| ^{N-\beta } \left[ 1+\left| y\right| \right] ^{4\alpha +\beta }}\textrm{d}y\\&\le \frac{C}{(1+\left| x\right| )^{5\alpha }}. \end{aligned}$$

Thus, we have that

$$\begin{aligned} \left| \phi (x)\right| =C(N,\alpha )\left| \int _{{\mathbb {R}}^N}\frac{{\mathcal {Q}} (\phi )(y)}{\left| x-y\right| ^{N-2\alpha }}\textrm{d}y\right| \le \left\{ \begin{array}{lllll} \frac{C}{(1+\left| y\right| )^{4\alpha }}, &{}\quad \text {if}\ \alpha <\frac{N}{6}, \\ \frac{C\left[ 1+\ln (1+\left| y\right| )\right] }{(1+\left| y\right| )^{4\alpha }}, &{}\quad \text {if}\ \alpha =\frac{N}{6}, \\ \frac{C}{(1+\left| y\right| )^{N-2\alpha }}, &{}\quad \text {if}\ \alpha \in (\frac{N}{6},\frac{\alpha }{4}]. \end{array} \right. \nonumber \\ \end{aligned}$$
(5.3)

According the above argument, for any \(\alpha \in (\frac{N}{6},\frac{N}{2})\), there holds that

$$\begin{aligned} \left| \int _{{\mathbb {R}}^N}\frac{{\mathcal {Q}}(\phi )(y)}{\left| x-y\right| ^{N-2\alpha }}\textrm{d}y\right| \le \frac{C}{(1+\left| y\right| )^{N-2\alpha }}. \end{aligned}$$

Thus, for any given \(\alpha \in (0,\frac{N}{2})\), after finite times of iterations as shown above, we can get the desired estimate (3.6). \(\square \)

1.2 Some useful estimates and energy expansion

Lemma 5.2

Let \(N\ge 5\), \(\beta \in [N-4,N-2)\) and \(\gamma \ge \frac{\min \{N-2,N-\beta \}-2}{\min \{N-2,N-\beta \}}\). Then, we have that for any \(i=1,\ldots ,k\)

$$\begin{aligned} \sum _{j=1,j\ne i}^k\frac{1}{\left| \Lambda (y^{j,k}-y^{i,k})\right| ^{\gamma }}\le \left\{ \begin{array}{lllll} Ck^{-\frac{2\gamma }{\min \{N-2,N-\beta \}-2}},&{}\quad \text {if}\ \ \gamma >1,\\ Ck^{-\frac{2}{\min \{N-2,N-\beta \}-2}}\ln k, &{}\quad \text {if}\ \ \gamma =1,\\ Ck^{1-\frac{(\min \{N-2,N-\beta \})\gamma }{\min \{N-2,N-\beta \}-2}}, &{}\quad \text {if}\ \ \frac{\min \{N-2,N-\beta \}-2}{\min \{N-2,N-\beta \}}\\ \le \gamma <1. \end{array} \right. \nonumber \\ \end{aligned}$$
(5.4)

where these points \(y^{j,k}\) with \(j=1,\ldots ,k\) are defined by (1.14), and \(\Lambda \in \left[ L_0k^{\frac{N-2}{N-4}}, L_1k^{\frac{N-2}{N-4}}\right] \) for some constants \(L_1>L_0>0\).

Proof

By definition (1.14), we get that

$$\begin{aligned}&\sum _{j=1,j\ne i}^k\frac{1}{\left| \Lambda (y^{j,k}-y^{i,k})\right| ^{\gamma }} =\sum _{j=1,j\ne i}^k\frac{1}{\left| 2\Lambda r\sin \frac{(j-i)\pi }{k}\right| ^{\gamma }} \le C\frac{1}{(r\Lambda )^\gamma }\sum _{j=1}^k\left( \frac{j}{k}\right) ^{-\gamma }\\&\le \left\{ \begin{array}{ll} Ck^{-\frac{2\gamma }{\min \{N-2,N-\beta \}-2}}&{}\quad \text {if}\ \gamma >1,\\ Ck^{-\frac{2}{\min \{N-2,N-\beta \}-2}}\left( 1+\int _1^{k} \xi ^{-1}\textrm{d}\xi \right) \\ \le Ck^{-\frac{2}{\min \{N-2,N-\beta \}-2}}\ln k &{}\quad \text {if}\ \gamma =1,\\ Ck^{-\frac{2\gamma }{\min \{N-2,N-\beta \}-2}}\left( 1 +\int _1^{k}\xi ^{-\gamma }\textrm{d}\xi \right) \\ \le Ck^{1-\frac{(\min \{N-2,N-\beta \})\gamma }{\min \{N-2,N-\beta \}-2}} &{}\quad \text {if}\ \ \frac{\min \{N-2,N-\beta \}-2}{\min \{N-2,N-\beta \}}\le \gamma <1. \end{array} \right. \end{aligned}$$

\(\square \)

Lemma 5.3

Let \(\beta \in [N-4,N-2)\) and \(N\ge 5\)

$$\begin{aligned} {\mathbb {I}}(z):=\int _{{\mathbb {R}}^N}\frac{1}{\left| y-z\right| ^{N-\beta }} \left[ \sum _{j=1}^k\left( \frac{1}{1+\left| y-\Lambda y^{j,k}\right| ^2}\right) ^{\frac{N-2}{2}}\right] ^{\frac{N+\beta }{N-2}}\textrm{d}y. \end{aligned}$$

Then, there holds that

$$\begin{aligned} {\mathbb {I}}(z)\le C(\beta ,N)\sum _{i=1}^k\frac{1}{\left( 1+\left| z-\Lambda y^{i,k}\right| \right) ^{N-\beta }}, \end{aligned}$$

for some positive constant \(C(\beta ,N)>0\) which only depends on \(\beta \) and N.

Proof

Using the facts that for any \(y\in \Omega _i\), \(j=1,\ldots ,k\) and \(j\ne i\), \(\left| y-\Lambda y^{j,k}\right| \ge \left| y-\Lambda y^{i,k}\right| \) and

$$\begin{aligned} \left| y-\Lambda y^{j,k}\right| ^2&\ge \left| y_1-\Lambda r\cos \frac{2(j-1) \pi }{k}\right| ^2+\left| y_2-\Lambda r\sin \frac{2(j-1)\pi }{k}\right| ^2\nonumber \\&\quad \left( y_1={\tilde{r}}\cos \theta ,\ \ y_2={\tilde{r}}\sin \theta ,\ \ \theta \in \left( \frac{(2i-3)\pi }{k},\frac{(2i-1)\pi }{k}\right) \right) \nonumber \\&\ge \left( \Lambda r-{\tilde{r}}\right) ^2+4\Lambda r {\tilde{r}}\sin ^2\left( \frac{(j-1)\pi }{k}-\frac{\theta }{2}\right) \nonumber \\&\ge \frac{1}{4}(\Lambda r)^2\sin ^2\frac{(j-i)\pi }{k}=\frac{1}{16} \left| \Lambda y^{i,j}-\Lambda y^{j,k}\right| ^2, \end{aligned}$$
(5.5)

and Lemmas 5.1-5.2, we have that

$$\begin{aligned} {\mathbb {I}}(z)&=\sum _{i=1}^k\int _{\Omega _i}\frac{1}{\left| y-z\right| ^{N-\beta }} \left[ \sum _{j=1}^k\left( \frac{1}{1+\left| y-\Lambda y^{j,k}\right| ^2} \right) ^{\frac{N-2}{2}}\right] ^{\frac{N+\beta }{N-2}}\textrm{d}y\\&\le C(\beta ,N)\sum _{i=1}^k\int _{\Omega _i} \frac{1}{\left| y-z\right| ^{N-\beta }}\left[ \sum _{j=1,j\ne i}^k \left( \frac{1}{1+\left| y-\Lambda y^{j,k}\right| }\right) ^{N-2} \right] ^{\frac{N+\beta }{N-2}}\textrm{d}y\\&\quad +C(\beta ,N)\sum _{i=1}^k\int _{\Omega _i}\frac{1}{\left| y-z\right| ^{N -\beta }}\left( \frac{1}{1+\left| y-\Lambda y^{i,k}\right| }\right) ^{N+\beta }\textrm{d}y\\&\le C(\beta ,N)\sum _{i=1}^k\int _{\Omega _i}\frac{1}{\left| y-z\right| ^{N -\beta }}\left( \frac{1}{1+\left| y-\Lambda y^{i,k}\right| }\right) ^{N+\beta -\frac{(N+\beta )(N-4)}{(N-2)^2}}\\&\quad \times \left[ \sum _{j=1,j\ne i}^k\left( \frac{1}{\Lambda \left| y^{i,k}-y^{j,k}\right| }\right) ^{\frac{N-4}{N-2}}\right] ^{\frac{N+\beta }{N-2}}\textrm{d}y\\&\quad +C(\beta ,N)\sum _{i=1}^k\int _{\Omega _i}\frac{1}{\left| y-z\right| ^{N -\beta }}\left( \frac{1}{1+\left| y-\Lambda y^{i,k}\right| }\right) ^{N+\beta }\textrm{d}y\\&\le C(\beta ,N)\sum _{i=1}^k\frac{1}{\left( 1+\left| z-\Lambda y^{i,k}\right| \right) ^{N-\beta }}, \end{aligned}$$

where we notice that \(\beta >\frac{(N+\beta )(N-4)}{(N-2)^2}\). \(\square \)

Lemma 5.4

(Energy expansion) Let \(\beta \in [N-4,N-2)\) and \(N\ge 5\). Then, there holds that

$$\begin{aligned} \textrm{E}(W_{\lambda _k,r_k})&= k\left\{ B_0+\frac{B_1V(r)}{\Lambda ^2}- \frac{B_2k^{-\min \{N-\beta ,N-2\}}}{(r\Lambda )^{\min \{N -\beta ,N-2\}}}+O\left( \frac{1}{\Lambda ^{2+\sigma }}\right) \right\} , \end{aligned}$$

where \(B_0\), \(B_1\) and \(B_2\) are fixed positive constants, \(\sigma >0\) is a small constant and \(y^{i,k}\) is defined by (1.14) for \(i=1,\ldots ,k\).

Proof

Recall that

$$\begin{aligned} \textrm{E}(W_{\Lambda ,r}){=}\frac{1}{2}\int _{{\mathbb {R}}^N}\left[ \left| \nabla W_{\Lambda ,r}\right| ^2{+}V(\left| z\right| )\left| W_{\Lambda ,r}\right| ^2\right] {-}\frac{1}{2\times 2^*_\beta }\int _{{\mathbb {R}}^N}\left[ \textrm{I}_{\beta }* W_{\Lambda ,r}^{2^*_\beta }\right] W_{\Lambda ,r}^{2^*_\beta },\nonumber \\ \end{aligned}$$
(5.6)

where \(W_{\Lambda ,r}\) is defined by (1.13) and \(2^*_\beta =\frac{N+\beta }{N-2}\). We next calculate each term in the above expansion.

By the definition of \(W_{\Lambda ,r}\) in (1.13) and rotation transformation, we have that

$$\begin{aligned} \int _{{\mathbb {R}}^N}\left| \nabla W_{\Lambda ,r}\right| ^2&=\sum _{i,j=1}^k\int _{{\mathbb {R}}^N} \left[ H^{2^*_\beta }_{\Lambda ,y^{j,k}}*\textrm{I}_{\beta }\right] H^{2^*_\beta -1}_{\Lambda ,y^{j,k}}H_{\Lambda ,y^{i,k}}\\&=k\left[ \int _{{\mathbb {R}}^N} \left[ H^{2^*_\beta }_{1,0}*\textrm{I}_{\beta } \right] H^{2^*_\beta }_{1,0}\right. \\&\left. +\sum _{i=2}^k\int _{{\mathbb {R}}^N} \left[ H^{2^*_\beta }_{\Lambda ,y^{1,k}}*\textrm{I}_{\beta } \right] H^{2^*_\beta -1}_{\Lambda ,y^{1,k}}H_{\Lambda ,y^{i,k}}\right] \\&=k\left[ \int _{{\mathbb {R}}^N} \left[ H^{2^*_\beta }_{1,0}*\textrm{I}_{\beta } \right] H^{2^*_\beta }_{1,0}+\sum _{i=2}^k\frac{C_0}{\Lambda ^{N-2} \left| y^{i,k}-y^{1,k}\right| ^{N-2}}\right. \\&\qquad \left. +O\left( \frac{k^{N-1}}{\Lambda ^{N-1}}\right) \right] , \end{aligned}$$

where we used Lemma 5.1 and the identity (see (37) in [8]) that

$$\begin{aligned} \int _{{\mathbb {R}}^N}\frac{1}{\left| x-y\right| ^{2s}}\left( \frac{1}{1+\left| y\right| ^2} \right) ^{N-s}\textrm{d}y={\bar{C}}(N,s)\left( \frac{1}{1+\left| x\right| ^2}\right) ^s, \end{aligned}$$
(5.7)

for \(2s\in (0,N)\) and some positive constant \({\bar{C}}(N,s)\).

Similarly, for the second term in (5.6), we have that

$$\begin{aligned}&\int _{{\mathbb {R}}^N}V(\left| z\right| )\left| W_{\Lambda ,r}\right| ^2\\&\quad =k\left[ \int _{{\mathbb {R}}^N} V(\left| z\right| )H^2_{\Lambda ,y^{1,k}}+\sum _{i=2}^k\int _{{\mathbb {R}}^N} V(\left| z\right| ) H_{\Lambda ,y^{1,k}}H_{\Lambda ,y^{i,k}}\right] \\&\quad =k\left[ \Lambda ^{-2}\int _{{\mathbb {R}}^N}V(\left| \Lambda ^{-1}z+y^{1,k}\right| ) H^2_{1,0}+\sum _{i=2}^k\int _{{\mathbb {R}}^N} O\left( H_{\Lambda ,y^{1,k}} H_{\Lambda ,y^{i,k}}\right) \right] \\&\quad =k\left[ \Lambda ^{-2}V(\left| y^{1,k}\right| )\int _{{\mathbb {R}}^N}H^2_{1,0} +O\left( \sum _{i=2}^k\frac{1}{\Lambda ^{N-2}\left| y^{1,k}-y^{i,k}\right| ^{N -4}}\right) \right. \\&\qquad \left. +O\left( \Lambda ^{-2-\frac{\theta }{2}}\right) \right] , \end{aligned}$$

where we used the fact that \(V(\left| z\right| )\in \textrm{C}^{0,\theta }((r_0-\varepsilon ,r_0+\varepsilon ))\).

We need to consider the last term in (5.6). By the fact that \(W_{\Lambda ,r} \in \Xi _s\) in (1.11), we get that

$$\begin{aligned}&\int _{{\mathbb {R}}^N}\left[ \textrm{I}_{\beta }*W_{\Lambda ,r}^{2^*_\beta } \right] W_{\Lambda ,r}^{2^*_\beta }\\&\quad =k\int _{\Omega _1} \left[ \textrm{I}_{\beta }*W_{\Lambda ,r}^{2^*_\beta } \right] W_{\Lambda ,r}^{2^*_\beta }\\&\quad =k\int _{\Omega _1}\left[ \textrm{I}_{\beta }*W_{\Lambda , r}^{2^*_\beta }\right] H_{\Lambda ,y^{1,k}}^{2^*_\beta } + k2^*_\beta \int _{\Omega _1}\left[ \textrm{I}_{\beta }* W_{\Lambda ,r}^{2^*_\beta }\right] H_{\Lambda ,y^{1,k} }^{2^*_\beta -1}\sum _{i=2}^kH_{\Lambda ,y^{i,k}}\\&\qquad {+}k\int _{\Omega _1}\left[ \textrm{I}_{\beta }*W_{\Lambda , r_k}^{2^*_\beta }\right] \left\{ O\left( H_{\Lambda ,y^{1,k} }^{2_\beta ^*{-}2}{+}\left[ \sum _{i=2}^kH_{\Lambda ,y^{i,k}} \right] ^{2_\beta ^*{-}2}\right) \left[ \sum _{i{=}2}^kH_{\Lambda ,y^{i,k}}\right] ^{2}\right\} \\&\quad =\tilde{{\mathfrak {J}}}_1+\tilde{{\mathfrak {J}}}_2+\tilde{{\mathfrak {J}}}_3, \end{aligned}$$

where the terms \(\tilde{{\mathfrak {J}}}_1\), \(\tilde{{\mathfrak {J}}}_2\) and \(\tilde{{\mathfrak {J}}}_3\) are defined by the last equality.

We notice that for any \(x\in \Omega _i\) with \(i=1,\ldots ,k\)

$$\begin{aligned} W_{\Lambda ,r}^{2^*_\beta }(x)&=H_{\Lambda ,y^{i,k}}^{2^*_\beta } +2^*_\beta H_{\Lambda ,y^{i,k}}^{2^*_\beta -1}\sum _{j=1,j\ne i}^kH_{\Lambda ,y^{j,k}}\\&\quad +O\left( H_{\Lambda ,y^{i,k}}^{2_\beta ^*-2} +\left[ \sum _{j=1,j\ne i}^kH_{\Lambda ,y^{j,k}}\right] ^{2_\beta ^* -2}\right) \left[ \sum _{j=1,j\ne i}^kH_{\Lambda ,y^{j,k}}\right] ^{2}. \end{aligned}$$

Thus, by Lemmas 5.1-5.2, HLS inequality (1.5), and identity (5.7), we have that

$$\begin{aligned} \tilde{{\mathfrak {J}}}_1&=k\sum _{i=1}^k\int _{\Omega _1} \int _{\Omega _i}\frac{A_\beta }{\left| x-z\right| ^{N-\beta }}W_{\Lambda , r}^{2^*_\beta }(z)\textrm{d}zH^{2^*_\beta }_{\Lambda ,y^{1,k}}(y)\textrm{d}y\\&=k\int _{\Omega _1}\left[ \textrm{I}_{\beta }*H^{2^*_\beta }_{\Lambda ,y^{1,k}}\right] W_{\Lambda ,r}^{2^*_\beta } \\&\quad +k\sum _{i=2}^k \int _{\Omega _1}\int _{\Omega _i}\frac{A_\beta }{\left| x-z\right| ^{N -\beta }}H_{\Lambda ,y^{i,k}}^{2^*_\beta }(z)\textrm{d} zH^{2^*_\beta }_{\Lambda ,y^{1,k}}(y)\textrm{d}y\\&\quad +kO\left( \Vert W_{\Lambda ,r}^{2^*_\beta }\Vert _{L^{\frac{3N}{2(N+\beta )}}(\Omega _1)} \Vert H_{\Lambda ,y^{1,k}}^{2^*_\beta }\Vert _{L^{\frac{3N}{N+\beta }} ({\mathbb {R}}^N\setminus \Omega _1)}\right) +kO\left( k^{N}\Lambda ^{-N}\right) \\&=k\int _{\Omega _1}\left[ \textrm{I}_{\beta }*H^{2^*_\beta }_{\Lambda , y^{1,k}}\right] \left\{ H_{\Lambda ,y^{1,k}}^{2^*_\beta }+2^*_\beta H_{\Lambda ,y^{1,k}}^{2^*_\beta -1}\sum _{j=2}^kH_{\Lambda ,y^{j,k}}\right\} \\&\quad +k\sum _{i=2}^k\int _{\Omega _1}\int _{\Omega _i}\frac{A_\beta }{\left| x-z\right| ^{N-\beta }}H_{\Lambda ,y^{i,k}}^{2^*_\beta }(z)\textrm{d}z H^{2^*_\beta }_{\Lambda ,y^{1,k}}(y)\textrm{d}y\\&\quad +kO\left( k^\frac{2(N+\beta )}{3}\Lambda ^{-\frac{2(N +\beta )}{3}}\right) +kO\left( k^{N-1}\Lambda ^{-(N-1)}\right) \\&=k\left[ \int _{{\mathbb {R}}^N}\left[ \textrm{I}_{N-4}*H^{2^*_\beta }_{1,0} \right] H^{2^*_\beta }_{1,0}+\sum _{j=2}^k\frac{C_1\Lambda ^{\beta -N}}{\left| y^{j,k}-y^{1,k}\right| ^{N-\beta }}+\sum _{j=2}^k\frac{2^*_\beta C_0\Lambda ^{2-N}}{\left| y^{j,k}-y^{1,k}\right| ^{N-2}}\right. \\&\quad \left. +O\left( \frac{1}{\Lambda ^{2+\sigma }}\right) \right] , \end{aligned}$$

and

$$\begin{aligned} \tilde{{\mathfrak {J}}}_2&=k2^*_\beta \int _{\Omega _1}\left[ \textrm{I}_{\beta }* W_{\lambda _k,r_k}^{2^*_\beta }\right] H_{\lambda _k,y^{1,k}}^{2^*_\beta -1} \sum _{i=2}^kH_{\lambda _k,y^{i,k}}\\&=k2^*_\beta C(N,\beta )\int _{\Omega _1}\left( \frac{\lambda _k}{1 +\lambda _k^2\left| z-y^{i,k}\right| ^2}\right) ^\frac{N+2}{2} \sum _{i=2}^kH_{1,\lambda _ky^{i,k}}+kO\left( \frac{k^{N-1}}{\lambda _k^{N-1}}\right) \\&=k\left[ \sum _{i=2}^k\frac{2^*_\beta C_0}{\lambda _k^{N-2} \left| y^{i,k}-y^{1,k}\right| ^{N-2}}+O\left( \frac{1}{\lambda _k^{2+\sigma }}\right) \right] , \end{aligned}$$

where \(\sigma >0\) is a small constant, \(C_0\) and \(C_1\) are fixed positive constants.

Similarly, we can get that

$$\begin{aligned} \tilde{{\mathfrak {J}}}_3&=k\int _{\Omega _1}\left[ \textrm{I}_{\beta }*W_{\Lambda ,r}^{2^*_\beta }\right] \left\{ O\left( H_{\Lambda ,y^{1,k}}^{2_\beta ^*-2}+\left[ \sum _{i=2}^kH_{\Lambda ,y^{i,k}}\right] ^{2_\beta ^*-2}\right) \left[ \sum _{i=2}^kH_{\Lambda ,y^{i,k}}\right] ^{2}\right\} \\&\le Ck\int _{\Omega _1}H_{\Lambda ,y^{1,k}}^{\frac{N+1}{N-2}}\left[ \sum _{i=2}^kH^\frac{N-1}{2(N-2)}_{\Lambda ,y^{i,k}}\right] ^{2}\\&\quad +Ck\int _{\Omega _1}H_{\Lambda ,y^{1,k}}^{\frac{N+1/2}{N-2}}\left[ \sum _{i=2}^kH^\frac{1}{2}_{\Lambda ,y^{i,k}}\right] ^{2}\left\{ \sum _{i=2}^kH^\frac{3}{2(N-2)}_{\Lambda ,y^{i,k}}\right\} \\&\quad +Ck\int _{\Omega _1}H_{\Lambda ,y^{1,k}}^{\frac{N+1}{N-2}}\left[ \sum _{i=2}^kH^\frac{N-1}{N+\beta }_{\Lambda ,y^{i,k}}\right] ^{2_\beta ^*}\\&\quad +Ck\int _{\Omega _1}H_{\Lambda ,y^{1,k}}^{\frac{N+1/2}{N-2}}\left[ \sum _{i=2}^kH^\frac{N-2}{N+\beta }_{\Lambda ,y^{i,k}}\right] ^{2_\beta ^*}\left\{ \sum _{i=2}^kH^\frac{3}{2(N-2)}_{\Lambda ,y^{i,k}}\right\} \\&\le C\frac{k^{N-1}}{\Lambda ^{N-1}}. \end{aligned}$$

Combining the above arguments and the proof of Lemma 5.2, we can obtain the desired result. \(\square \)

Moreover, according to a similar argument in above proof and the fact that

$$\begin{aligned} \frac{\partial H_{\Lambda ,y}}{\partial \Lambda }(z)= \frac{N-2}{2\Lambda }\left( \frac{1-\Lambda ^2\left| z-y\right| ^2}{1+\Lambda ^2\left| z-y\right| ^2}\right) H_{\Lambda ,y}(z), \end{aligned}$$

we can get the following asymptotic expansion of \(\frac{\partial \textrm{E}(W_{\Lambda ,r})}{\partial \Lambda }\).

Lemma 5.5

There holds that

$$\begin{aligned}&\frac{\partial \textrm{E}(W_{\Lambda ,r})}{\partial \Lambda }\\&=k\left\{ -\frac{2B_1V(r_k)}{\Lambda ^3}+ \frac{\min \{N-\beta ,N-2\}B_2k^{\min \{N-\beta ,N-2\}}}{\Lambda ^{\min \{N-\beta +1,N-1\}}r^{\min \{N-\beta ,N-2\}}} +O\left( \frac{1}{\Lambda ^{3+\sigma }}\right) \right\} , \end{aligned}$$

where \(B_1\), \(B_2\) and \(\sigma >0\) are given by Lemma 5.4, \(y^{i,k}\) is defined by (1.14) for \(i=1,\ldots ,k\) and \(r\in [r_0-\delta ,r_0+\delta ]\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Liu, C. Classification, non-degeneracy and existence of solutions to nonlinear Choquard equations. J. Fixed Point Theory Appl. 26, 20 (2024). https://doi.org/10.1007/s11784-024-01107-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-024-01107-w

Keywords

Mathematics Subject Classification

Navigation