Cosmic divergence, weak cosmic convergence, and fixed points at infinity

  • Ernest K. Ryu


To characterize the asymptotic behavior of fixed-point iterations of non-expansive operators with no fixed points, Bauschke et al. (J Fixed Point Theory Appl 18(2):297–307, 2016) recently studied cosmic convergence and conjectured that cosmic convergence always holds. This paper presents a cosmically divergent counterexample, which disproves this conjecture. This paper also demonstrates, with a counterexample, that cosmic convergence can be weak in infinite dimensions. Finally, this paper shows positive results relating to cosmic convergence that provide an interpretation of cosmic accumulation points as fixed points at infinity.


Cosmic convergence non-expansive mapping convex optimization weak convergence minimal displacement vector 

Mathematics Subject Classification

Primary 47H09 Secondary 90C25 


  1. 1.
    Aliprantis, C., Border, K.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Baillon, J.-B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4(1), 1–9 (1978)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017)CrossRefGoogle Scholar
  4. 4.
    Bauschke, H.H., Douglas, G.R., Moursi, W.M.: On a result of Pazy concerning the asymptotic behaviour of non-expansive mappings. J. Fixed Point Theory Appl. 18(2), 297–307 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)CrossRefGoogle Scholar
  6. 6.
    Gaubert, S., Vigeral, G.: A maximin characterisation of the escape rate of non-expansive mappings in metrically convex spaces. Math. Proc. Camb. Philos. Soc. 152(2), 341–363 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29(2), 403–419 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lins, B.: Asymptotic behavior of non-expansive mappings in finite dimensional normed spaces. Proc. Am. Math. Soc. 137(7), 2387–2392 (2009)CrossRefGoogle Scholar
  9. 9.
    Moreau, J.J.: Proximité et dualité dans un espace Hilbertien. Bulletin de la Société Mathématique de France 93, 273–299 (1965)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pazy, A.: Asymptotic behavior of contractions in Hilbert space. Isr. J. Math. 9(2), 235–240 (1971)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.7324 Mathematical SciencesUniversity of California, Los Angeles (UCLA)Los AngelesUSA

Personalised recommendations