Skip to main content
Log in

Burgers type equations, Gelfand’s problem and Schumpeterian dynamics

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Burgers’ equations have been introduced to study different models of fluids (Bateman, 1915, Burgers, 1939, Hopf, 1950, Cole, 1951, Lighthill andWhitham, 1955, etc.). The difference-differential analogues of these equations have been proposed for Schumpeterian models of economic development (Iwai, 1984, Polterovich and Henkin, 1988, Belenky, 1990, Henkin and Polterovich, 1999, Tashlitskaya and Shananin, 2000, etc.).

This paper gives a short survey of the results and conjectures on Burgers type equations, motivated both by fluid mechanics and by Schumpeterian dynamics. Proofs of some new results are given. This paper is an extension and an improvement of (Henkin, 2007, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bardi, L. C. Evans: On Hopf’s formulas for solutions of Hamilton- Jacobi equations. Nonlinear Anal. 8, 1373–1381 (1984)

    Article  MathSciNet  Google Scholar 

  2. H. Bateman: Some recent researches on the motion of fluids. Monthly Weather Rev. 43, 163–170 (1915)

    Article  Google Scholar 

  3. P. Bauman, D. Phillips: Large-time behavior of solutions to a scalar conservation law in several space dimensions. Trans. Amer. Math. Soc. 298, 401–419 (1986)

    Article  MathSciNet  Google Scholar 

  4. V. Belenky, Alternative version of evolution model of Polterovich-Henkin “diffusion of technologies". In: Analyse and Modelisation of Economical Processes, Moscow, CEMI RAN, 2007, 115–142 (in Russian).

  5. V. Belenky, Diagram of growth of a monotonic function and a problem of their reconstruction by the Diagram. Preprint, Central Economics and Mathematical Institut, Academy of Sciences of the USSR, Moscow, 1990, 1-44 (in Russian).

  6. S. Benzoni-Gavage, P. Huot and F. Rousset, Nonlinear stability of semidiscrete shock waves. SIAM J. Math. Anal. 35 (2003), 639–707.

    Google Scholar 

  7. S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. (2) 161 (2005), 223–342.

  8. S. E. Buckley and M. C. Leverett, Mechanism of fluid displacement in sands. AIME 146 (1942), 107–116.

    Google Scholar 

  9. J. M. Burgers, Application of a model system to illustrate some points of the statistical theory of free turbulence. Proc. Acad. Sci. Amsterdam 43 (1940), 2–12.

    Google Scholar 

  10. J M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. 1 17 (1939), 1–53.

  11. J D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9 (1951), 225–236.

    Google Scholar 

  12. E D. Conway, The formation and decay of shocks for a conservation law in several dimensions. Arch. Ration. Mech. Anal. 64 (1977), 47–57.

    Google Scholar 

  13. S. Engelberg and S. Schochet, Nonintegrable perturbations of scalar viscous shock profiles. Asymptot. Anal. 48 (2006), 121–140.

  14. B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36 (1981), 321–351.

    Google Scholar 

  15. V.A.Florin, Some of the simplest nonlinear problems arising in the consolidation of wet soil. Izv. Akad. Nauk SSSR Otdel. Tekhn. Nauk 9 (1948), 1389–1397 (in Russian).

  16. H. Freistuhler and D. Serre, L 1 -stability of shock waves in scalar viscous conservation laws. Comm. Pure Appl. Math. 51 (1998), 291–301.

  17. U. Frisch, S. Matarrese, R. Mohayaee and A. Sobolevskii, A reconstruction of the initial condition of the Universe by optimal mass transportation. Nature 417 (2002), 260–262.

    Google Scholar 

  18. A. V.Gasnikov, Convergence in the form of a solutions of the Cauchy problem for a quasilinear parabolic equation with a monotone initial condition to a system of waves. Comput. Math. Math. Phys. 48 (2008), 1376–1405.

  19. A. V. Gasnikov, Time asymptotic behavior of the solution of the initial Cauchy problem for a conservation law with nonlinear divergent viscosity. Izv. Ross. Akad. Nauk Ser. Mat. 73 (2009), 39–76.

  20. A. V. Gasnikov, Time asymptotic behavior of the solution to a quasilinear parabolic equation. Comput. Math. Math. Phys. 46 (2006), 2136–2153.

    Google Scholar 

  21. I.M. Gelfand, Some problems in the theory of quasilinear equations. Usp. Mat. Nauk 14 (1959), 87–158 (in Russian); English transl.: Amer. Math. Soc. Transl. 33 (1963), 295–381.

  22. L. M. Gelman, M. I. Levin, V. M. Polterovich and V. A. Spivak, Modelling of dynamics of enterprises. Distribution by efficiency levels for the Ferrous Metallurgy. Economic Math. Methods 29 (1993), 1071–1083.

    Google Scholar 

  23. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (1965), 697–715.

  24. J. Goodman and J. Miller, Long-time behaviour of scalar viscous shock fronts in two dimensions. J. Dynam. Differential Equations 11 (1999), 255–277.

    Google Scholar 

  25. S. Gurbatov, A. I. Saichev and S. F. Shandarin, The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion. Mon. Not. R. astr. Soc. 236 (1989), 385–402.

    Google Scholar 

  26. R. Hanel, P. Klimek and S. Thurner, Schumpeterian economic dynamics as a quantifiable model of evolution. New J. Phys. 12 (2010), 075029.

    Google Scholar 

  27. R. Hanel, P. Klimek and S. Thurner, Studies in the physics of evolution: Creation, formation, destruction. In: Complex Systems II (SPIE Proceedings, vol. 6802), SPIE, 2007.

  28. A. Harten, J. M. Hyman and P. D. Lax, On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. 29(1976), 297–322.

    Google Scholar 

  29. G. Henkin, Asymptotic structure for solutions of the Cauchy problem for Burgers type equations. J. Fixed Point Theory Appl. 1 (2007), 239–291.

    Google Scholar 

  30. G. Henkin, Burgers type equations and Schumpeterian dynamics. In: Conference of General Equilibrium Analysis, Higher School of Economics, 2011.

  31. G. M. Henkin and V. M. Polterovich, A difference-differential analogue of the Burgers equation and some models of economic development. Discrete Contin. Dyn. Syst. 5 (1999), 697–728.

    Google Scholar 

  32. G. M. Henkin and V. M. Polterovich, A difference-differential analogue of the Burgers equation: Stability of the two-wave behavior. J. Nonlinear Sci. 4 (1994), 497–517.

    Google Scholar 

  33. G. M. Henkin and V. M. Polterovich, Schumpeterian dynamics as a nonlinear wave theory. J. Math. Econom. 20 (1991), 551–590. Burgers type equations

    Google Scholar 

  34. G. M. Henkin and A. A. Shananin, Asymptotic behavior of solutions of the Cauchy problem for Burgers type equations. J. Math. Pures Appl. (9) 83 (2004), 1457–1500.

    Google Scholar 

  35. G. M. Henkin, A. A. Shananin and A. E. Tumanov, Estimates for solutions of Burgers type equations and some applications. J. Math .Pures Appl. (9) 84 (2005), 717–752.

    Google Scholar 

  36. E. Hopf, Generalized solutions of non-linear equations of first order. J. Math. Mech. 14 (1965), 951–973.

    Google Scholar 

  37. E. Hopf, The partial differential equation u t uu x =  μu x x. Comm. Pure Appl. Math. 3 (1950), 201–230.

  38. D. Hoff and K. Zumbrun, Asymptotic behaviour of multidimensional scalar viscous shock fronts. Indiana Univ. Math. J. 49 (2000), 427–474.

  39. A.M. Iljin and O. A. Oleinik, Asymptotic long-time behaviour of the Cauchy problem for some quasilinear equation. Mat. Sb. 51 (1960), 191– 216 (in Russian).

    Google Scholar 

  40. K. Iwai, Schumpeterian dynamics, Part I: An evolutionary model of innovation and imitation. J. Economic Behavior & Organization 5 (1984), 159–190.

    Google Scholar 

  41. K. Iwai, Schumpeterian dynamics, Part II: Technological progress, firm growth and "economic selection". J. Economic Behavior & Organization 5 (1984), 287–320.

    Google Scholar 

  42. A. Kolmogorov, I. Petrovski and N. Piskunov, A study of the diffusion equation with increase of the amount of substance and its application to biological problem. Bull. Moscow Univ. Math. Mech. 1 (1937), 1–26.

    Google Scholar 

  43. S. N. Kruzkov and N. S. Petrosjan, Asymptotic behavior of solutions of Cauchy problem for nonlinear equations of first order. Russian Math. Surveys 42 (1987), 3–40.

  44. S. N. Kruzkov and N. S. Petrosjan, Asymptotic of solutions of Cauchy problem for quasilinear equations of first order. Dokl. Akad. Nauk. USSR 265 (1982), 801–804.

    Google Scholar 

  45. N. Kuznetsov, Accuracy of some approximate methods for computing the weak solutions of a first order quasi-linear equation. Comput. Math. Math. Phys. 16 (1976), 105–119.

    Google Scholar 

  46. P. D. Lax, Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math. 10 (1957), 537–566.

  47. M. J. Lighthill and G. B. Whitham, On kinematic waves II: A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London Ser. A 229 (1955), 281–345.

    Google Scholar 

  48. T.-P. Liu, Admissible solutions of hyperbolic conservation laws. Mem. Amer. Math. Soc. 30 (1981), 1–78.

  49. T.-P. Liu, Nonlinear stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56 (1985), 1–108.

  50. T.-P. Liu, A. Matsumura and K. Nishihara, Behaviors of solutions for the Burgers equation with boundary corresponding to rarefaction waves. SIAM J. Math. Anal. 29 (1998), 293–308.

  51. V.Maslov, Asymptotic Methods and Theory of Perturbations. M. Nauka, Moscow, 1988 (in Russian).

  52. M. Mejai and V. Volpert, Convergence to systems of waves for viscous scalar conservation laws. Asympt. Anal. 20 (1999), 351–366.

    Google Scholar 

  53. O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Usp. Mat. Nauk 14 (1959), 165–170 (in Russian); English transl.: Amer. Math. Soc. Transl. 33 (1963), 285–290.

  54. N. S. Petrosjan, About asymptotics of solutions of the Cauchy problem for quasilinear equation of first order with nonconvex state function. Russian Math. Surveys (Translation of Uspehi Mat. Nauk) 38 (1983), 213–214.

    Google Scholar 

  55. V. M. Polterovich and G. M. Henkin, An evolutionary model of economic growth. Econom. Math. Methods 25 (1989), 518–531 (in Russian); English transl.: Matecon 26 (1990), 44–64.

  56. V. M. Polterovich and G. M. Henkin, An evolutionary model with interaction between development and adoption of new technologies. Econom. Math. Methods 24 (1988), 1071–1083 (in Russian); English transl.: Matecon 24 (1988), 3–19.

  57. V. M. Polterovich and G. M. Henkin, Diffusion of technologies and economic growth. Preprint, CEMI Academy of Sciences of the USSR, 1988, 1-44 (in Russian).

  58. B. Riemann, Uber die Fortpflanrung ebener Luftwellen von endlicher Schwingungsweite. Gottingen Abh. Math. cl 8 (1860), 43–65.

  59. J. A. Schumpeter, Business Cycles: A Theoretical, Historical and Statistical Analysis of the Capitalist Process. McGraw-Hill, New York, 1939.

  60. J. A. Schumpeter, Theorie der wirtschaftlichen Entwicklung. Wien, 1911.

  61. D. Serre, L 1 -stability of nonlinear waves in scalar conservation laws. In: Evolutionary Equations, Vol. I, Handb. Differ. Equ., North-Holland, Amsterdam, 2004, 473–553.

  62. D. Serre, Systems of Conservation Laws. I. Cambridge University Press, Cambridge, 1999.

  63. A. Szepessy and Z. Xin, Nonlinear stability of viscous shock waves. Arch. Ration. Mech. Anal. 122(1993), 53–103.

    Google Scholar 

  64. Y. M. Tashlitskaya and A. A. Shananin, Investigation of a model of propagation of new technologies. Preprint, Moscow Computer Centre RAN, 2000 (in Russian).

  65. H. F. Weinberger, Long-time behavior for a regularized scalar conservation law in the absence of genuine nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 407–425.

    Google Scholar 

  66. G. Whitham, Linear and Nonlinear Waves. Wiley, New York, 1974.

  67. S. H. Yu, Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. Arch. Ration. Mech. Anal. 146 (1999), 275– 370.

    Google Scholar 

  68. Ya. Zeldovich, Gravitational instability: An approximate theory for large density perturbations. Astron. Astrophys. 5 (1970), 84–89. Burgers type equations

  69. K. Zumbrun and P. Howard, Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47 (1998), 741–871.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Henkin.

Additional information

To Professor Richard Palais on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henkin, G.M. Burgers type equations, Gelfand’s problem and Schumpeterian dynamics. J. Fixed Point Theory Appl. 11, 199–223 (2012). https://doi.org/10.1007/s11784-012-0089-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-012-0089-9

Mathematics Subject Classification

Keywords

Navigation