Skip to main content
Log in

Discovery of emerging organic pollutants in the atmosphere through an omics approach

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Ambient air pollution, containing numerous known and hitherto unknown compounds, is a major risk factor for public health. The discovery of harmful components is the prerequisite for pollution control; however, this raises a great challenge on recognizing previously unknown species. Here we systematically review the analytical techniques on air pollution in the framework of an omics approach, with a brief introduction on sample preparation and analysis, and in more detail, compounds prioritization and identification. Through high-resolution mass spectrometry (HRMS, typically coupled with chromatography), the complicated environmental matrix can be digitalized into “full-component” data. A key step to discover emerging compounds is the prioritization of compounds from massive data. Chemical fingerprints, suspect lists and biological effects are the most vital untargeted strategies for comprehensively screening critical and hazardous substances. Afterward, compressed data of compounds can be identified at various confidence levels according to exact mass and the derived molecular formula, MS libraries, and authentic standards. Such an omics approach on full-component data provides a paradigm for discovering emerging air pollutants; nonetheless, new technological advancements of instruments and databases are warranted for further tracking the environmental behaviors, hence to evaluate the health risk of key pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceña J, Stampachiacchiere S, Pérez S, Barceló D (2015). Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis. Analytical and Bioanalytical Chemistry, 407(21): 6289–6299

    Article  Google Scholar 

  • Atkinson R, Arey J (1994). Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environmental Health Perspectives, 102(Suppl 4): 117–126

    CAS  Google Scholar 

  • Avagyan R, Åberg M, Westerholm R (2016). Suspect screening of OH-PAHs and non-target screening of other organic compounds in wood smoke particles using HR-Orbitrap-MS. Chemosphere, 163: 313–321

    Article  CAS  Google Scholar 

  • Brack W (2003). Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Analytical and Bioanalytical Chemistry, 377(3): 397–407

    Article  CAS  Google Scholar 

  • Brack W, Ait-Aissa S, Burgess R M, Busch W, Creusot N, Di Paolo C, Escher B I, Mark Hewitt L, Hilscherova K, Hollender J, et al. (2016). Effect-directed analysis supporting monitoring of aquatic environments: an in-depth overview. Science of the Total Environment, 544: 1073–1118

    Article  CAS  Google Scholar 

  • Brook R D, Rajagopalan S, Pope C A 3rd, Brook J R, Bhatnagar A, Diez-Roux A V, Holguin F, Hong Y, Luepker R V, Mittleman M A, et al., the American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 121(21): 2331–2378

    Article  CAS  Google Scholar 

  • Brüggemann M, Van Pinxteren D, Wang Y, Yu J Z, Herrmann H (2019). Quantification of known and unknown terpenoid organosulfates in PM10 using untargeted LC-HRMS/MS: contrasting summertime rural Germany and the North China Plain. Environmental Chemistry, 16(5): 333–346

    Article  Google Scholar 

  • Chan L K, Nguyen K Q, Karim N, Yang Y, Rice R H, He G, Denison M S, Nguyen T B (2020). Relationship between the molecular composition, visible light absorption, and health-related properties of smoldering woodsmoke aerosols. Atmospheric Chemistry and Physics, 20(1): 539–559

    Article  CAS  Google Scholar 

  • Cheng Z, Qiu X, Shi X, Zhu T (2021). Identification of organosiloxanes in ambient fine particulate matters using an untargeted strategy via gas chromatography and time-of-flight mass spectrometry. Environmental Pollution, 271: 116128

    Article  CAS  Google Scholar 

  • Chiaia-Hernandez A C, Krauss M, Hollender J (2013). Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environmental Science & Technology, 47(2): 976–986

    Article  CAS  Google Scholar 

  • De Martinis B S, Kado N Y, de Carvalho L R F, Okamoto R A, Gundel L A (1999). Genotoxicity of fractionated organic material in airborne particles from São Paulo, Brazil. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 446(1): 83–94

    Article  CAS  Google Scholar 

  • Dix D J, Houck K A, Martin M T, Richard A M, Setzer R W, Kavlock R J (2007). The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicological Sciences, 95(1): 5–12

    Article  CAS  Google Scholar 

  • Dobiáš L, Kůsová J, Gajdoš O, Vidová P, Gajdosová D, Havránková J, Fried M, Binková B, Topinka J (1999). Bioassay-directed chemical analysis and detection of mutagenicity in ambient air of the coke oven. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 445(2): 285–293

    Article  Google Scholar 

  • Dulio V, van Bavel B, Brorström-Lundén E, Harmsen J, Hollender J, Schlabach M, Slobodnik J, Thomas K, Koschorreck J (2018). Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environmental Sciences Europe, 30(1): 5

    Article  Google Scholar 

  • Durant J L, Lafleu A L (2011). Effect-Directed analysis of mutagens in ambient airborne particles. In: Brack W, ed. Effect-Directed Analysis of Complex Environmental Contamination. Heidelberg: Springer. 199–236

    Chapter  Google Scholar 

  • Escher B I, Stapleton H M, Schymanski E L (2020). Tracking complex mixtures of chemicals in our changing environment. Science, 367(6476): 388–392

    Article  CAS  Google Scholar 

  • Fernando S, Renaguli A, Milligan M S, Pagano J J, Hopke P K, Holsen T M, Crimmins B S (2018). Comprehensive analysis of the Great Lakes top predator fish for novel halogenated organic contaminants by GC×GC-HR-ToF mass spectrometry. Environmental Science & Technology, 52(5): 2909–2917

    Article  CAS  Google Scholar 

  • Gago-Ferrero P, Krettek A, Fischer S, Wiberg K, Ahrens L (2018). Suspect screening and regulatory databases: A powerful combination to identify emerging micropollutants. Environmental Science & Technology, 52(12): 6881–6894

    Article  CAS  Google Scholar 

  • Gago-Ferrero P, Schymanski E L, Bletsou A A, Aalizadeh R, Hollender J, Thomaidis N S (2015). Extended suspect and nontarget strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environmental Science & Technology, 49(20): 12333–12341

    Article  CAS  Google Scholar 

  • Gao K, Zhang Y, Liu Y, Yang M, Zhu T (2021). Screening of imidazoles in atmospheric aerosol particles using a hybrid targeted and untargeted method based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Analytica Chimica Acta, 1163: 338516

    Article  CAS  Google Scholar 

  • GBD 2019 Risk Factors Collaborators (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258): 1223–1249

    Article  Google Scholar 

  • González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker A M, Etxebarria N, Irazola M, Prieto A, Olivares M, Zuloaga O (2021). Suspect and non-target screening: the last frontier in environmental analysis. Analytical Methods, 13(16): 1876–1904

    Article  Google Scholar 

  • Gosetti F, Mazzucco E, Gennaro M C, Marengo E (2016). Contaminants in water: non-target UHPLC/MS analysis. Environmental Chemistry Letters, 14(1): 51–65

    Article  CAS  Google Scholar 

  • Grung M, Kringstad A, Bæk K, Allan I J, Thomas K V, Meland S, Ranneklev S B (2017). Identification of non-regulated polycyclic aromatic compounds and other markers of urban pollution in road tunnel particulate matter. Journal of Hazardous Materials, 323(Pt A): 36–44

    Article  CAS  Google Scholar 

  • Hernández F, Portolés T, Pitarch E, López F J (2011). Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology. Trends in Analytical Chemistry, 30(2): 388–400

    Article  Google Scholar 

  • Hernández F, Sancho J V, Ibáñez M, Abad E, Portolés T, Mattioli L (2012). Current use of high-resolution mass spectrometry in the environmental sciences. Analytical and Bioanalytical Chemistry, 403(5): 1251–1264

    Article  Google Scholar 

  • Hoh E, Dodder N G, Lehotay S J, Pangallo K C, Reddy C M, Maruya K A (2012). Nontargeted comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry method and software for inventorying persistent and bioaccumulative contaminants in marine environments. Environmental Science & Technology, 46(15): 8001–8008

    Article  CAS  Google Scholar 

  • Hoh E, Zhu L, Hites R A (2006). Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environmental Science & Technology, 40(4): 1184–1189

    Article  CAS  Google Scholar 

  • Hollender J, Schymanski E L, Singer H P, Ferguson P L (2017). Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? Environmental Science & Technology, 51(20): 11505–11512

    Article  CAS  Google Scholar 

  • Hong S, Giesy J P, Lee J S, Lee J H, Khim J S (2016). Effect-directed analysis: current status and future challenges. Ocean Science Journal, 51(3): 413–433

    Article  CAS  Google Scholar 

  • Hu W, Jia Y, Kang Q, Peng H, Ma H, Zhang S, Hiromori Y, Kimura T, Nakanishi T, Zheng L, et al. (2019). Screening of house dust from Chinese homes for chemicals with liver X receptors binding activities and characterization of atherosclerotic activity using an in vitro macrophage cell line and ApoE-/- mice. Environmental Health Perspectives, 127(11): 117003

    Article  Google Scholar 

  • Huang K, Wang X, Zhang H, Zeng L, Zhang X, Wang B, Zhou Y, Jing T (2020). Structure-directed screening and analysis of thyroid-disrupting chemicals targeting transthyretin based on molecular recognition and chromatographic separation. Environmental Science & Technology, 54(9): 5437–5445

    Article  CAS  Google Scholar 

  • Hug C, Ulrich N, Schulze T, Brack W, Krauss M (2014). Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environmental Pollution, 184: 25–32

    Article  CAS  Google Scholar 

  • Jeon J, Kurth D, Hollender J (2013). Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry. Chemical Research in Toxicology, 26(3): 313–324

    Article  CAS  Google Scholar 

  • Jeon S H, Lim H B, Choi N R, Lee J Y, Ahn Y K, Kim Y P (2019). Classification and characterization of organic aerosols in the atmosphere over Seoul using two dimensional gas chromatography-time of flight mass spectrometry (GC×GC/TOF-MS) data. Asian Journal of Atmospheric Environment, 13(2): 88–98

    Article  CAS  Google Scholar 

  • Jiang H, Li J, Sun R, Tian C, Tang J, Jiang B, Liao Y, Chen C E, Zhang G (2021a). Molecular dynamics and light absorption properties of atmospheric dissolved organic matter. Environmental Science & Technology, 55(15): 10268–10279

    Article  CAS  Google Scholar 

  • Jiang X, Han Y, Qiu X, Chai Q, Zhang H, Chen X, Cheng Z, Wang Y, Fan Y, Xue T, Li W, Gong J, Zhu T (2021b). Organic components of personal PM2.5 exposure associated with inflammation: Evidence from an untargeted exposomic approach. Environmental Science & Technology, 55(15): 10589–10596

    Article  CAS  Google Scholar 

  • Jiang X, Xu F, Qiu X, Shi X, Pardo M, Shang Y, Wang J, Rudich Y, Zhu T (2019). Hydrophobic organic components of ambient fine particulate matter (PM2.5) associated with inflammatory cellular response. Environmental Science & Technology, 53(17): 10479–10486

    Article  CAS  Google Scholar 

  • Johnston M V, Kerecman D E (2019). Molecular characterization of atmospheric organic aerosol by mass spectrometry. Annual Review of Analytical Chemistry, 12(1): 247–274

    Article  CAS  Google Scholar 

  • Keyte I J, Harrison R M, Lammel G (2013). Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons: a review. Chemical Society Reviews, 42(24): 9333–9391

    Article  CAS  Google Scholar 

  • Kim K H, Jahan S A, Kabir E, Brown R J C (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60(60): 71–80

    Article  CAS  Google Scholar 

  • Kuang B Y, Yeung H S, Lee C C, Griffith S M, Yu J Z (2018). Aromatic formulas in ambient PM2.5 samples from Hong Kong determined using FT-ICR ultrahigh-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 410(24): 6289–6304

    Article  CAS  Google Scholar 

  • Lammel G (2015). Polycyclic aromatic compounds in the atmosphere: a review identifying research needs. Polycyclic Aromatic Compounds, 35(2–4): 316–329

    Article  CAS  Google Scholar 

  • Lin Y, Ma Y, Qiu X, Li R, Fang Y, Wang J, Zhu Y, Hu D (2015). Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM2.5 in Beijing. Journal of Geophysical Research. Atmospheres, 120(14): 7219–7228

    Article  CAS  Google Scholar 

  • Lin Y, Qiu X, Zhao Y, Ma J, Yang Q, Zhu T (2013). Polybromobenzene pollutants in the atmosphere of North China: Levels, distribution, and sources. Environmental Science & Technology, 47(22): 12761–12767

    Article  CAS  Google Scholar 

  • Lin Y, Yang J, Fu Q, Ruan T, Jiang G (2019). Exploring the occurrence and temporal variation of ToxCast chemicals in fine particulate matter using suspect screening strategy. Environmental Science & Technology, 53(10): 5687–5696

    Article  CAS  Google Scholar 

  • Liu Q, Li L, Zhang X, Saini A, Li W, Hung H, Hao C, Li K, Lee P, Wentzell J J B, Huo C, Li S M, Harner T, Liggio J (2021a). Uncovering global-scale risks from commercial chemicals in air. Nature, 600(7889): 456–461

    Article  CAS  Google Scholar 

  • Liu Y, D’Agostino L A, Qu G, Jiang G, Martin J W (2019). High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. Trends in Analytical Chemistry, 121: 115420

    Article  CAS  Google Scholar 

  • Liu Y, Misztal P K, Arata C, Weschler C J, Nazaroff W W, Goldstein A H (2021b). Observing ozone chemistry in an occupied residence. Proceedings of the National Academy of Sciences of the United States of America, 118(6): e2018140118

    Article  CAS  Google Scholar 

  • Manzano C A, Marvin C, Muir D, Harner T, Martin J, Zhang Y (2017). Heterocyclic aromatics in petroleum coke, snow, lake sediments, and air samples from the Athabasca oil sands region. Environmental Science & Technology, 51(10): 5445–5453

    Article  CAS  Google Scholar 

  • Meng W, Li J, Shen J, Deng Y, Letcher R J, Su G (2020). Functional group-dependent screening of organophosphate Esters (OPEs) and discovery of an abundant OPE bis-(2-ethylhexyl)-phenyl phosphate in indoor dust. Environmental Science & Technology, 54(7): 4455–4464

    Article  CAS  Google Scholar 

  • Nishioka M G, Howard C C, Contos D A, Ball L M, Lewtas J (1988). Detection of hydroxylated nitro aromatic and hydroxylated nitro polycyclic aromatic compounds in an ambient air particulate extract using bioassay-directed fractionation. Environmental Science & Technology, 22(8): 908–915

    Article  CAS  Google Scholar 

  • Ouyang X, Weiss J M, de Boer J, Lamoree M H, Leonards P E G (2017). Non-target analysis of household dust and laundry dryer lint using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. Chemosphere, 166: 431–437

    Article  CAS  Google Scholar 

  • Peng H, Chen C, Cantin J, Saunders D M V, Sun J, Tang S, Codling G, Hecker M, Wiseman S, Jones P D, et al. (2016). Untargeted screening and distribution of organo-iodine compounds in sediments from Lake Michigan and the Arctic Ocean. Environmental Science & Technology, 50(18): 10097–10105

    Article  CAS  Google Scholar 

  • Phillips K A, Yau A, Favela K A, Isaacs K K, McEachran A, Grulke C, Richard A M, Williams A J, Sobus J R, Thomas R S, Wambaugh J F (2018). Suspect screening analysis of chemicals in consumer products. Environmental Science & Technology, 52(5): 3125–3135

    Article  CAS  Google Scholar 

  • Pourchet M, Debrauwer L, Klanova J, Price E J, Covaci A, Caballero-Casero N, Oberacher H, Lamoree M, Damont A, Fenaille F, et al. (2020). Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: from promises to challenges and harmonisation issues. Environment International, 139: 105545

    Article  CAS  Google Scholar 

  • Rajagopalan S, Al-Kindi S G, Brook R D (2018). Air pollution and cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology, 72(17): 2054–2070

    Article  CAS  Google Scholar 

  • Roach P J, Laskin J, Laskin A (2011). Higher-order mass defect analysis for mass spectra of complex organic mixtures. Analytical Chemistry, 83(12): 4924–4929

    Article  CAS  Google Scholar 

  • Rogge W F, Mazurek M A, Hildemann L M, Cass G R, Simoneit B R T (1993). Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment. Part A, General Topics, 27(8): 1309–1330

    Article  Google Scholar 

  • Röhler L, Bohlin-Nizzetto P, Rostkowski P, Kallenborn R, Schlabach M (2021). Non-target and suspect characterisation of organic contaminants in ambient air — Part 1: Combining a novel sample clean-up method with comprehensive two-dimensional gas chromatography. Atmospheric Chemistry and Physics, 21(3): 1697–1716

    Article  Google Scholar 

  • Röhler L, Schlabach M, Haglund P, Breivik K, Kallenborn R, Bohlin-Nizzetto P (2020). Non-target and suspect characterisation of organic contaminants in Arctic air, Part II: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air. Atmospheric Chemistry and Physics, 20(14): 9031–9049

    Article  Google Scholar 

  • Salmeen I T, Pero A M, Zator R, Schuetzle D, Riley T L (1984). Ames assay chromatograms and the identification of mutagens in diesel particle extracts. Environmental Science & Technology, 18(5): 375–382

    Article  CAS  Google Scholar 

  • Schymanski E L, Jeon J, Gulde R, Fenner K, Ruff M, Singer H P, Hollender J (2014a). Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science & Technology, 48(4): 2097–2098

    Article  CAS  Google Scholar 

  • Schymanski E L, Singer H P, Longrée P, Loos M, Ruff M, Stravs M A, Ripollés Vidal C, Hollender J (2014b). Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environmental Science & Technology, 48(3): 1811–1818

    Article  CAS  Google Scholar 

  • Schymanski E L, Singer H P, Slobodnik J, Ipolyi I M, Oswald P, Krauss M, Schulze T, Haglund P, Letzel T, Grosse S, et al. (2015). Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry, 407(21): 6237–6255

    Article  CAS  Google Scholar 

  • Shi X, Qiu X, Chen Q, Chen S, Hu M, Rudich Y, Zhu T (2021a). Organic iodine compounds in fine particulate matter from a continental urban region: Insights into secondary formation in the atmosphere. Environmental Science & Technology, 55(3): 1508–1514

    Article  CAS  Google Scholar 

  • Shi X, Qiu X, Cheng Z, Chen Q, Rudich Y, Zhu T (2020). Isomeric identification of particle-phase organic nitrates through gas chromatography and time-of-flight mass spectrometry coupled with an electron capture negative ionization source. Environmental Science & Technology, 54(2): 707–713

    Article  CAS  Google Scholar 

  • Shi X, Qiu X, Jiang X, Rudich Y, Zhu T (2021b). Comprehensive detection of nitrated aromatic compounds in fine particulate matter using gas chromatography and tandem mass spectrometry coupled with an electron capture negative ionization source. Journal of Hazardous Materials, 407: 124794

    Article  CAS  Google Scholar 

  • Sumner L W, Amberg A, Barrett D, Beale M H, Beger R, Daykin C A, Fan T W M, Fiehn O, Goodacre R, Griffin J L, et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3): 211–221

    Article  CAS  Google Scholar 

  • Veenaas C, Bignert A, Liljelind P, Haglund P (2018). Nontarget screening and time-trend analysis of sewage sludge contaminants via two-dimensional gas chromatography-high resolution mass spectrometry. Environmental Science & Technology, 52(14): 7813–7822

    Article  CAS  Google Scholar 

  • Vermeulen R, Schymanski E L, Barabási A L, Miller G W (2020). The exposome and health: Where chemistry meets biology. Science, 367(6476): 392–396

    Article  CAS  Google Scholar 

  • Wang K, Huang R J, Brüggemann M, Zhang Y, Yang L, Ni H, Guo J, Wang M, Han J, Bilde M, et al. (2021). Urban organic aerosol composition in eastern China differs from north to south: Molecular insight from a liquid chromatography-mass spectrometry (Orbitrap) study. Atmospheric Chemistry and Physics, 21(11): 9089–9104

    Article  CAS  Google Scholar 

  • Williams A J, Grulke C M, Edwards J, McEachran A D, Mansouri K, Baker N C, Patlewicz G, Shah I, Wambaugh J F, Judson R S, Richard A M (2017). The CompTox chemistry dashboard: a community data resource for environmental chemistry. Journal of Cheminformatics, 9(1): 61

    Article  Google Scholar 

  • Xu C, Gao L, Zheng M, Qiao L, Wang K, Huang D, Wang S (2021). Nontarget screening of polycyclic aromatic compounds in atmospheric particulate matter using ultrahigh resolution mass spectrometry and comprehensive two-dimensional gas chromatography. Environmental Science & Technology, 55(1): 109–119

    Article  CAS  Google Scholar 

  • Yang D, Han J, Hall D R, Sun J, Fu J, Kutarna S, Houck K A, LaLone C A, Doering J A, Ng C A, Peng H (2020). Nontarget screening of per- and polyfluoroalkyl substances binding to human liver fatty acid binding protein. Environmental Science & Technology, 54(9): 5676–5686

    Article  CAS  Google Scholar 

  • Ye L, Meng W, Huang J, Li J, Su G (2021). Establishment of a target, suspect, and functional group-dependent screening strategy for organophosphate esters (OPEs): “Into the Unknown” of OPEs in the sediment of Taihu Lake, China. Environmental Science & Technology, 55(9): 5836–5847

    Article  CAS  Google Scholar 

  • Young T M, Black G P, Wong L, Bloszies C S, Fiehn O, He G, Denison M S, Vogel C F A, Durbin-Johnson B (2021). Identifying toxicologically significant compounds in urban wildfire ash using in vitro bioassays and high-resolution mass spectrometry. Environmental Science & Technology, 55(6): 3657–3667

    Article  CAS  Google Scholar 

  • Yu N, Guo H, Yang J, Jin L, Wang X, Shi W, Zhang X, Yu H, Wei S (2018). Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China. Environmental Science & Technology, 52(15): 8205–8214

    Article  CAS  Google Scholar 

  • Yu N, Wen H, Wang X, Yamazaki E, Taniyasu S, Yamashita N, Yu H, Wei S (2020). Nontarget discovery of per- and polyfluoroalkyl substances in atmospheric particulate matter and gaseous phase using cryogenic air sampler. Environmental Science & Technology, 54(6): 3103–3113

    Article  CAS  Google Scholar 

  • Zhang X, Saini A, Hao C, Harner T (2020). Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: opportunities and challenges. Trends in Analytical Chemistry, 132: 116052

    Article  CAS  Google Scholar 

  • Zheng Y, Chen Q, Cheng X, Mohr C, Cai J, Huang W, Shrivastava M, Ye P, Fu P, Shi X, Ge Y, Liao K, Miao R, Qiu X, Koenig T K, Chen S (2021). Precursors and pathways leading to enhanced secondary organic aerosol formation during severe haze episodes. Environmental Science & Technology, 55(23): 15680–15693

    Article  CAS  Google Scholar 

  • Zhou B (2015). Adverse outcome pathway: framework, application, and challenges in chemical risk assessment. Journal of Environmental Sciences (China), 35: 191–193

    Article  Google Scholar 

  • Zwiener C, Frimmel F H (2004). LC-MS analysis in the aquatic environment and in water treatment: a critical review. Part I: Instrumentation and general aspects of analysis and detection. Analytical and Bioanalytical Chemistry, 378(4): 851–861

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 41961134034 and 21876002), the 111 Project of Urban Air Pollution and Health Effects (China) (B20009), and the International Joint Laboratory for Regional Pollution Control, Ministry of Education (China). The authors acknowledge the technical support from Agilent Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghua Qiu.

Additional information

Highlights

• We review the framework of discovering emerging pollutants through an omics approach.

• High-resolution MS can digitalize atmospheric samples to full-component data.

• Chemical features and databases can help to translate untargeted data to compounds.

• Biological effect-directed untargeted analyses consider both existence and toxicity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Qiu, X., Shi, X. et al. Discovery of emerging organic pollutants in the atmosphere through an omics approach. Front. Environ. Sci. Eng. 17, 45 (2023). https://doi.org/10.1007/s11783-023-1645-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1645-9

Keywords

Navigation